GRETA’s GOOD PRACTICE EXAMPLES

Every partner country has provided a list of examples of existing shallow geothermal energy installations, which proved to be effective and sustainable. Non-conventional applications were highlighted, to give insight on the variable fields of application of shallow geothermal energy. The most interesting examples from different techniques and topics were chosen to serve as “good practice examples”.

The figure on the next page shows the location of the “good practice examples” within the project area.
This project is co-financed by the European Union through the Interreg Alpine Space programme.

Funding
Total eligible costs: € 2,962,952.30
ERDF grant: € 2,308,232.96

Project duration
16/12/2015 - 15/12/2018

Follow us on
Overview of Good Practice Examples

Austria – Fa. EGO-Austria Elektrogeräte GesmbH p. 1
Austria – Fa. Euroclima p. 2
Austria – Gipfelstadl Wagrain p. 3
Austria – Lake-water pool at Hotel Hochschober p. 4
Austria – Biohotel Crystal p. 5
Austria – Stiegeralm p. 6
Austria – Sunna Alm mountain restaurant p. 7
Austria – Tunnel wall activation Jenbach p. 8
France – Collective housing Metz-Tessy p. 9
France – Monastery of Ganagobie p. 10
France – Industrial building Rhone-Alpes p. 11
France – Parador Resort p. 12
France – Industrial building “La Talaudière” p. 13
Germany – Lido Benediktbeuern p. 14
Germany – GROB-WERKE Mindelheim p. 15
Germany – Kranzberg p. 16
Germany – Settlement Ludwigshöhe, Kempten p. 17
Germany – Heated railway switch Oberstaufen p. 18
Germany – Heated railway switches Oberstdorf p. 19
Germany – Lorry test site heating p. 20
Germany – Road surface heating p. 21
Germany – Football stadium heating p. 22
Germany – Mammut Logistics center p. 23
Germany – Swabian media publishing house p. 23
Germany – Winterhalter Gastronom GmbH p. 23
Italy – Bar-Restaurant “Pit-Stop” p. 24
Italy – Chaberton residence p. 25
Italy – Bus and train garage Croviana (Val di Sole) p. 26
Italy – Maison Lostan p. 27
Italy – Municipal and registry office Palazzo Lombardia p. 28
Italy – Ice Rink ‘Pala Vuerich’ p. 29
Italy – Municipal and Registry Office Buildings (Lombardia) p. 30
Italy – District heating Ostana p. 31
Italy – Museo Egiezo Piemonte p. 32
Italy – District heating Canavese p. 33
Italy – Terme Acqui p. 34
Italy – Data center of the provider “Aruba” p. 35
Slovenia – GRETA AWARD WINNER: Planica Nordic Center p. 36
Slovenia – Swimming club Gorenjska Banka Radovljica, Olympic swimming pool p. 38
Slovenia – Campsite KLIN Lepena p. 39
Slovenia – Kindergarten Oton Župančič p. 40
Slovenia – Termoshop industrial and commercial building p. 41
Slovenia – National Interprofessional Nordic Center (DPNC) p. 42
Switzerland – Holiday resort Reka Blatten-Belalp p. 43
Switzerland – Saas-Fee District heating p. 44
Switzerland – Tunnel Great St. Bernard p. 45
Since 1994 water is used directly (without a GWHP) to cool machinery at the production site. 3 machines are being cooled – those are: a Vermiculite-expansion kiln, a dryer for Vermiculite products and an oven for hardening of steel parts. The water is taken from one well, filtered, used for cooling and afterwards drained in a small stream at the site. They hold an 8 m³ buffer storage and are able to connect the system to the tap in case of system failure. The performance of the water well is constant since the implementation. Heat recovery is not being performed because the whole heating/ventilation system would have to be adapted.

Water is taken from a 15 m deep well with about 6 - 10 °C for cooling of three machines in the production cycle. Afterwards the water is drained into a small stream.

<table>
<thead>
<tr>
<th>System usage</th>
<th>Cooling only, permanent use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy output</td>
<td>Volume or area to be acclimatised: 3 production machines are being cooled</td>
</tr>
<tr>
<td>Economic & ecologic key facts</td>
<td>Running costs/year: about 100.000 kWh *0.06 € = 6.000 € (electrical energy), about 500 € maintenance</td>
</tr>
<tr>
<td>Geothermal heat exchanger details</td>
<td>Production well(s) depth: 15 m</td>
</tr>
<tr>
<td></td>
<td>Infiltration well(s): After cooling water is drained into a small stream</td>
</tr>
<tr>
<td></td>
<td>Distance between wells: 15 m from the well to the stream (Villgratterbach)</td>
</tr>
<tr>
<td></td>
<td>Well tube diameter: 15 cm</td>
</tr>
<tr>
<td>System performance</td>
<td>Heat pump (HP) rated power (W10/W35): no heat pump installed</td>
</tr>
<tr>
<td></td>
<td>Flow rate per well: 4 m³/h (consent: 10,8 m³/h)</td>
</tr>
<tr>
<td>Geological & hydrological specifics</td>
<td>Geological region: Periadriatic seam (S-alpine)</td>
</tr>
<tr>
<td></td>
<td>Rough description of bedrock: Quaternary sediments (Würm and post-glacial)</td>
</tr>
<tr>
<td></td>
<td>Groundwater temp.: Avg. 8 °C Min. 6 °C Max. 10 °C</td>
</tr>
<tr>
<td></td>
<td>Description of aquifer: gravel</td>
</tr>
<tr>
<td></td>
<td>Water level in borehole: 10 m</td>
</tr>
</tbody>
</table>
Company Euroclima
Sillian, Tyrol (Austria)

Groundwater use for heating and domestic hot water

The air-condition machinery production site of the company Euroclima in Sillian, eastern Tyrol, was one of the first in Austria to implement a GWHP for heating purposes. They use a 35 m deep aquifer with relatively high temperatures of > 10 °C all year round at an altitude of > 1.000 m. The water is used to heat offices (about 20 °C) and a production hall to about 15 - 18 °C via floor heating and is drained to a small stream at the site.

Water from two wells (max. 28 l/s) is used for heating offices and one production hall via two GWHPs. Return water is drained into a small stream.

| System usage | Groundwater heat pump for heating and domestic hot water production, permanent use incl. seasonal peaks
| Additional non-NSGE installations: Air HP + pellets burning to heat a new production hall. PV system for electrical energy production and DHW.
| Possible integration with other energy sources: pellets stove
| Energy output | Volume or area to be acclimatised: about 38.000 m³, 4.500 m²
| Economic & ecologic key facts | Installation costs: about 75.000 €
| Running costs/year: (part of the electricity is produced via PV system) + about 600 € maintenance for HP
| Avoided CO2 emissions/CO2 reduction: 100 %
| Geothermal heat exchanger details | Count/depth of wells: two wells each 58 m deep
| Infiltration well(s): After heating the water is drained into a small stream
| Distance between wells: 20 m from the well to the stream
| Minimal flow- and return: 28 l/s
| Flow temp. before / after HP: 8 - 11 °C / 5 – 6 °C
| System performance | Heat pump (HP) rated power (W10/W35): 2 HPs, each 109 kW (installed 2013)
| Annual HP working hours: 4320 h
| Annual electricity consumption of the HP: 20,4 kW * 4.320 h/a ➔ about 90.000 kWh/a
| Flow rate per well: max. 47 m³/h (demand ~186.000 m³/a)
| HP outlet temperature on building side: max. 45°C (temp of inlet fluid in heating/cooling emitters)
| Coefficient of performance (W10/W35): >3
| Materials used | Completion/backfilling material in wells: filtersand
| Heat pump working fluids (refrigerant): R407C
| Geological & hydrological specifics | Geological region: Periadriatic seam (S-alpine)
| Rough description of bedrock: Quaternary sediments (Würm and post-glacial)
| Groundwater temp.: Avg. 8 °C Min. 6 °C Max. 11 °C
| Description of aquifer: gravel
| Thickness of aquifer: 34 – 57 m
| Water level in borehole: ~30 m

Altitude: **1083 m**
Average annual outside temperature: **7 °C**
Average heating degree days: **4,500 Kday** (base temperature 20 °C)
Time of geothermal heat exchanger implementation: **1983**
Located at an altitude of almost 1800 m, the mountain restaurant has implemented a BHE field after renovation of the alpine hut. 15 deep drillings were constructed to heat the chalet and the outside terrace area. The installation of a geothermal heat pump system with 1760 meters of drillings in total replaces the pre-existing gas heating system. A low-temperature kitchen- and restaurant ventilation system was implemented as well as the installation of an outdoor heating for the terrace area.

Altitude: **1850 m**
Average annual outside temperature: **3 °C**
Average heating degree days: **5.800 Kday**
(base temperature 20 °C)
Time of geothermal heat exchanger implementation: **2015**

Located at an altitude of almost 1800 m, the mountain restaurant has implemented a BHE field after renovation of the alpine hut. 15 deep drillings were constructed to heat the chalet and the outside terrace area. The installation of a geothermal heat pump system with 1760 meters of drillings in total replaces the pre-existing gas heating system. A low-temperature kitchen- and restaurant ventilation system was implemented as well as the installation of an outdoor heating for the terrace area.

| System usage | Heating and domestic hot water production, seasonal use
| Additional non-NSGE installations: wood stove, buffer storage 3.000 l |
| Energy output | Volume or area to be acclimatised: **about 400 m²** |
| Economic & ecologic key facts | Amortization: **7 – 8 \[a\]**
| Reduction of heating energy costs: **15.000 \[\€/a\]** |
| Geothermal heat exchanger details | Count and length of BHEs: **15 wells with a total length of 1760 m**
| **BHE type:** double-U |
| System performance | Heat pump (HP) rated power (W10/W35): **90 kW (KNV Energietechnik)** |
| Geological & hydrological specifics | Geological region: **Wölzer Nappe system**
| Rough description of bedrock: **Quartzphyllite, Phyllonite, Micashists - Devonian** |
Lake-water is used to heat a swimming pool within this lake from mid of May to mid of September at an altitude of 1763 m via a groundwater heat pump.

Water with temperatures of about 15 – 17 °C is taken from the lake to heat a swimming pool within this lake. The groundwater heat pump rises the temperature to about 30 °C, the return flow is being drained into the lake with about 10 °C.

System usage
- **Heating, seasonal use**
- **Additional non-NSGE installations:** Pellets from October until May
- **Possible integration with other energy sources:** pellets stove

Energy output
- **Volume or area to be acclimatised:** lake pool with 25 x 10 m

Economic & ecologic key facts
- **Installation costs:** 20,000 € for the system, not including the pool itself
- **Running costs/year:** about 8,000 € electricity + about 500 € maintenance, so 8,500 €/a
- **Avoided CO2 emissions/CO2 reduction:** 100 %

Geothermal heat exchanger details
- **Count/depth of wells:** one HP in the lake
- **Flow temperature before HP:** 15 – 20 °C
- **Flow temperature after HP:** 10 °C

System performance
- **Heat pump (HP) rated power (W10/W35):** 42 kW
- **Annual HP working hours:** 1600 h
- **Annual electricity consumption of the HP:** about 70,000 kWh/a (550 kWh/day; 13h/day; 4 months)
- **Flow rate per well:** about 20 m³/h
- **HP outlet temperature on building side:** > 30 °C
- **Coefficient of performance (W10/W35):** < 3

Materials used
- **Completion/backfilling material in wells:** Filtersand
- **Heat pump working fluids (refrigerant):** R407C

Geological & hydrological specifics
- **Geological region:** Upper Carboniferous – Permian
- **Rough description of bedrock:** Phylite – Phyllonite, shists
- **Lake water temp.:** Min. 15 °C Max. 20 °C
Biohotel Crystal
Obergurgl, Tyrol (Austria)
Borehole heat exchanger field for heating

This winter sports hotel fosters the implementation of renewable energy sources to cover heating demand. The hotel is split into two parts, an old and a new building connected by a bridge across the main street. The old building is still being heated with oil but the new part (constructed in 2008), including indoor and outdoor swimming pools, as well as an adjacent sports market are being heated via the BHE field. The underground is certainly cold in this altitude, this is why the BHE field needs to be regenerated in summer by the solar panels installed at the roof-top of the hotel.

The BHE field is located underneath the new part of the hotel and is made up of 66 probes (grouped to 4, connected in parallel), each about 120 m deep – in total about 8,000 m pipe length. 4 heat pumps (thereof 3 low temperature, 1 high temperature) are running to produce the heat. A buffer storage of 20 m³ is available.

System usage
- Heating and domestic hot water production, seasonal use
- Additional non-NSGE installations: 265 m² solar collector for regenerating the underground in summer; oil burner (old building)

Energy output
- Volume or area to be acclimatised: 40,000 m³ (hotel, wellness-area, swimming pools)

Economic & ecologic key facts
- Installation costs: > 1 m €
- Amortization: 10-12 a
- Running costs/year: 30,000 €/a (electrical energy), 2,000 € (maintenance + solar costs)
- Avoided CO2 emissions/CO2 reduction: about 80 %
- Reduction of primary energy consumption: about 70 %

Geothermal heat exchanger details
- Count and length of BHEs: 66 wells with an overall length of 7920 m and a max. depth of 120 m
- Spacing of boreholes (BHEs): 5 - 6 m, underneath the building
- BHE type: double-U pipe
- Area of activation for storage: about 4,000 m²
- Volume of activation for storage: about 400,000 m³

System performance
- Heat pump (HP) rated power (W10/W35): 3 low temp. HPs for heating (each 127.7 kWh) + 1 high-temp. HP (78.3 kWh) (booster for DHW to 60 °C)
- Annual HP working hours: ~2,000 h
- Flow temp. before / after HP: 5 °C / -1 °C
- Cooling capacity for BHE: 20 – 30 W/m

Materials used
- Completion/backfilling material: Concrete – bentonite suspension
- Heat transfer media/heat carrier fluid: Ethanol Watercote
- Heat pump working fluids (refrigerant): R407C

Geological & hydrological specifics
- Geological region: Eastern Alpine Crystalline rocks (Ötztal-Bundschuh-System)
- Rough description of bedrock: About 18 m of gravel (Quaternary sediments), underneath gneiss
- Thermal conductivity of the underground: about 2.9 W/mK
- Ground temperature (Av./Min/max) 4 – 5 °C (geopot study)
Stiegeralm
Saalbach-Hinterglemm, Salzburg (Austria)
Horizontal heat collector for heating

Altitude: 1487 m
Average annual outside temperature: 6 °C
Average heating degree days: about 5.100 Kday (base temperature 20 °C)
Time of geothermal heat exchanger implementation: 2013

Chalet with ground heat collectors installed in approximately 1.8 m depth with horizontal design in the same altitude (problem of air in the line).

| System usage | Heating and domestic hot water production, seasonal use
| | Additional non-NSGE installations: wood stove |
| Energy output | Volume or area to be acclimatised: about 180 m² |
| Economic & ecologic key facts | Installation costs: about 50,000 €
| | Running costs/year: about 1,200 € electrical energy |
| Geothermal heat exchanger details | Area of collector: about 500 m²
| | Installation depth of collector pipes: 1.8 m |
| Geological & hydrological specifics | Geological region: Eastern Alpine Units / Greywacke zone (Upper Ordovician + Devonian)
| | Rough description of bedrock: sand-, silt- and claystones |
This reconstruction currently represents the highest passive-energy restaurant in the Alpine region and is associated to the mountain station of the Riffsee cable car. Solar and geothermal technology allow the complete abandonment of fossil fuels - with 135 open days in winter and 100 in summer, this results in an annual saving of 35.000 litres of fuel oil.

Seven deep drilling were conducted up to 120 m depth adjacent to the building. The underground temperatures are negative in this very high altitude location – thus the efficiency of the system is fairly low. To enhance the system, the BHE field is regenerated in summer via solar panels which are installed on top of the roof. This makes it a combined heating & storage application. The building is heated by a panel heating system. It is attached to the cable car mountain station, also in terms of property and electrical installations – thus electrical energy demand is not counted separately.

System usage
Heating, storage and domestic hot water production, seasonal use
Additional non-NSGE installations: 34 m² solar collectors (steep angle due to architecture) for regeneration of the underground in low- and off-season

Energy output
Volume or area to be acclimatised: about 560 m²

Economic & ecologic key facts
Amortization: unknown (motivation for the installation was not amortization time, rather innovation / ecological motivation)
Final energy efficiency rating of the building: 12 kWh/(m²*a)
Running costs/year: about 500 € (maintenance) + ? € (see "descr. of the installation") electrical energy
Reduction of heating energy costs: new building
Avoided CO2 emissions: 100 %
Reduction of primary energy consumption: 100 %

Geothermal heat exchanger details
Count and length of BHEs: 7 wells with an overall length of 840 m and a max. depth of 120 m
Specific abstraction capacity / cooling capacity of BHE: about 50 W/m
Spacing of boreholes (BHEs): 5 m
BHE type: simplex probe DN 40, Ø 32 mm
Outer diameter of PE pipes: 4 cm
Flow temp. before / after HP: -3 °C / -9 °C
Coefficient of performance (W10/W35): low efficiency < 2

System performance
Heat pump (HP) rated power (W10/W35): 47 kW (AHWP 5000 S Geosol HP)
Annual electricity consumption of the HP: el. nominal consumption 10.9 kW
Flow rate prim. circuit at HP: ~ 10 m³/h
Area of activation for storage: ~ 200m²
Vol. of activation for storage: ~ 20.000 m³
Coefficient of performance (W10/W35): low efficiency < 2

Materials used
Completion/backfilling material: Concrete – bentonite suspension
Heat transfer media/heat carrier fluid: Glycol based ("Powercool" by Thermo Chema)
Heat pump working fluids (refrigerant): R407C

Geological & hydrological specifics
Geological region: Eastern Alpine Crystalline rocks (Ötztal – Bundschuh nappe system)
Rough description of bedrock: About 1 m of soil, underneath gneiss- and micashists
Thermal conductivity of the underground: about 2.5 W/mK
Ground temperature (Av./Min/max): -3 °C
A section of 54 m of the railway tunnel underneath Jenbach have been thermally activated and hydraulically connected to a 40 kW heat pump in a commercial building of the “Zillertalbahn”. The tunnel has been built with pre-fabricated segments, where the absorber pipes have been attached to the steel reinforcement, see pictures. The installation is a pilot / demonstrator project of Züblin (tunnel elements) and REHAU (pipe technology) The operation results showed that max 50 % of the geothermal installation would have been sufficient. Therefore, the economic figures of this demonstrator project are poor, but would be much better with projects designed on the basis of the results obtained – and if a reversible heat pump allowing heating and cooling would be applied.

System usage

<table>
<thead>
<tr>
<th>Heating within the pre-fabricated wall segments of a railway tunnel</th>
</tr>
</thead>
</table>

Energy output

<table>
<thead>
<tr>
<th>Annual energy output Heating: 75,000 kWh</th>
<th>Practically demanded peak load: Heating: 40 kW</th>
<th>Volume or area to be acclimatised: 350 m²</th>
</tr>
</thead>
</table>

Economic & ecologic key facts

<table>
<thead>
<tr>
<th>Installation costs: 69,000 €</th>
<th>Amortization: 23 years</th>
<th>Electricity source: DE mix, PV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running costs/year: 3,600 €</td>
<td>Reduction of heating energy costs: 50 % or 3,000€/a</td>
<td></td>
</tr>
</tbody>
</table>

Economic & ecologic key facts

<table>
<thead>
<tr>
<th>Avoided CO₂ emissions / CO₂ reduction: 48 % or 11 t/a</th>
<th>Reduction of primary energy consumption: 70 %</th>
</tr>
</thead>
</table>

Geothermic heat exchanger details

<table>
<thead>
<tr>
<th>Length of installed pipes: 4700 m</th>
<th>Area of collector: 2200 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific abstraction capacity of HP: 25 W/m²</td>
<td>Spacing of collector pipes: 0,4 m</td>
</tr>
<tr>
<td>Min. flow- and return flow temp. for heating: 5 - 0 °C; (For cooling max: 20 – 15 °C)</td>
<td></td>
</tr>
</tbody>
</table>

System performance

<table>
<thead>
<tr>
<th>Heat pump (HP) rated power (B0/W35): 40 kW</th>
<th>Flow rate primary circuit at HP: 11 m³/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual HP working hours: 2500 h</td>
<td>HP operation mode: monovalent</td>
</tr>
<tr>
<td>Annual electricity consumption of the HP: 18.750 kWh/a</td>
<td>Coefficient of performance (B0/W35): 4</td>
</tr>
</tbody>
</table>

Materials used

| Heat transfer media/heat carrier fluid: water and ethylene glycol |

Geological & hydrological specifics

<table>
<thead>
<tr>
<th>Geological region: Central Alps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough description of bedrock: Palaeozoic, Quartzphyllite</td>
</tr>
<tr>
<td>Thermal conductivity of the soil: 3,4 W/(m·K)</td>
</tr>
<tr>
<td>Ground temperature Avg.: 15 °C, Min: 12 °C, Max: 17 °C</td>
</tr>
</tbody>
</table>

Left: figure showing monitoring data

Right: figure illustrating The tunnel section © Züblin
A HP and 15 BHE to heat 2000 m² of collective housing.
The SNC CPGEDIM SAVOIE LEMAN company uses a HP connected to 15 100 m deep BHE to heat and cool (free-cooling) 2000 m² of collective housing. Due to geological conditions (clay and silt) the amount of available underground water is limited. A close-loop solution has therefore been chosen. On the 1st year of exploitation, Monitored installation SPF is 5.33.

Data collected with the courtesy of ADEME (French Environment and Energy Management Agency), Regional Direction of Rhône-Alpes-Auvergne.

System usage
- **Heating and cooling, permanent use**
- **Additional non-NSGE installations:** Electrical heater. Power = 36 kW (rarely used)

Energy output
- **Annual energy output - Design values:**
 - **Heating:** 138.5 MWh
 - **Cooling:** 13.5 MWh (geocooling)
- **Volume or area to be acclimatised:** 2000 m²

Economic & ecologic key facts
- **Installation costs:** see below
- **Amortization:** see below
- **Running costs/year:** see below
- **Avoided CO₂ emissions/CO₂ reduction:** 5 t CO₂/y

Geothermal heat exchanger details
- **Count and length of BHEs:** 15 wells with a depth of 100 m and an overall length of 6.000 m
- **Specific abstraction capacity / cooling capacity of BHE:** 48 W/m
- **BHE type:** double-U, GeoCOAX

System performance
- **Heat pump (HP) rated power (W10/W35):**
 - Calorific power = 84.5 kW with COP =4.07 at condenser temperature 35.0/45.0 °C.
 - Model DYNACIAT ILG 300V R410A with 2 scroll compressors.
- **Coefficient of performance (W10/W35):** HP performance has been monitored from Mai 2013 to April 2014 (1st year of operation). 141.06 MWh of heating was delivered to the building. Cooling is negligible (0.35 MWh). The installation SPF was monitored to 5.33.

Materials used
- **Completion/backfilling material:** Küchler K-Injekt-Therm
- **Heat transfer media/heat carrier fluid:** water + glycol
- **Heat pump working fluids (refrigerant):** R410A

Geological & hydrological specifics
- **Rough description of bedrock:**
 - 0-20m: silt+gravel, 20-24 m: silt+clay, 24-50 m: gravel+sand, 50-100 m: silt+clay+some gravels
- **Thermal conductivity of the underground:** 1.7 W/mK
- **Ground temperature (Av./Min/max):** Avg.: 13.2 °C

Details for Installation costs:
The geothermal installation was compared to a reference solution, made of a gas boiler for heating and an air/water HP for cooling. Below are the investment costs (tax excluded) for both solutions:

<table>
<thead>
<tr>
<th></th>
<th>Geothermal Solution</th>
<th>Reference Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating production</td>
<td>55 436.00 €</td>
<td>15 790.00 €</td>
</tr>
<tr>
<td>Cooling production</td>
<td>0.00 €</td>
<td>17 977.00 €</td>
</tr>
<tr>
<td>BHE, etc.</td>
<td>90 000.00 €</td>
<td>4 500.00 €</td>
</tr>
<tr>
<td>Monitoring system</td>
<td>7 000.00 €</td>
<td>7 000.00 €</td>
</tr>
<tr>
<td>Design</td>
<td>4 800.00 €</td>
<td>4 800.00 €</td>
</tr>
<tr>
<td>Distribution</td>
<td>204 903.00 €</td>
<td>204 903.00 €</td>
</tr>
<tr>
<td>TOTAL</td>
<td>362 139.00 €</td>
<td>250 170.00 €</td>
</tr>
</tbody>
</table>

The annual running costs was estimated to be 3.3 k€ for the geothermal solution against 7.9 k€ for the reference solution. Without any subsidy the payback time would have been 31 years. The ADEME granted 144 k€ reducing the payback time to 1 year.
A ground-sourced heat pump to heat an historical monastery. Data collected with the courtesy of AFPG and CIAT.

In order to save fossil fuels, the Monastery of Ganagobie, located between Sisteron and Manosque, was equipped with a ground-source heat pump associated with a heating floor in 2012. 1,000 m² including the dining room, kitchen, hall and church, are heated thanks to borehole heat exchangers that ensure 50 kW of heating. The former propane boiler is solicited as a backup.

System usage
- Heating, seasonal use
- Additional non-NSGE installations: propane boiler

Energy output
- Practically demanded peak load: Heating: 50 [kW]
- Volume or area to be acclimatised: 1,000 m²

Economic & ecologic key facts
- Installation costs: estimated at 100,000 € (drilling and installation of probes: 50,000 € HT; heat pumps: 50,000 €)
- Amortization: 8 years
- Reduction of heating energy costs: Estimated annual savings 13,000 €

Geothermal heat exchanger details
- Count and length of BHEs: 9 wells with a depth of 100 m each
- Spacing of boreholes (BHEs): 10 m

System performance
- Flow rate primary circuit at HP: 1,55 m³/h

Materials used
- Heat transfer media/heat carrier fluid: Water
A heat pump on an open-loop system to heat an industrial building. Data collected with the courtesy of ADEME (French Environment and Energy Management Agency), Regional Direction of Rhône-Alpes-Auvergne. The ADEME supported the project with a founding of 22,600 €.

A 3,660 m² industrial building is heated by a geothermal HP. The geothermal HP was installed in 2015 to replace a gas boiler, so that to decrease energy costs. Further improvement of the insulation of the building northern façade decreased the estimated energy consumption from 183 to 171 MWh/y. The building is heated with fan-coils. The HP condenser outlet temperature was initially in the range 50 - 55 °C. It was lowered by a few °C; the COP appeared to increase without affecting the comfort of building users.

System usage
- Heating, seasonal use
- Additional non-NSGE installations: gas boiler (power: 280 kW, efficiency = 80 %) installed in 2008. Only for backup in case HP failure

Energy output
- Annual energy output for heating: 171 MWh (design value); Monitored from 01/01/2016 to 31/12/2016: 94.6 MWh
- Practically demanded peak load for heating: 116 kW (design value, to cover the whole heat demand by -13 °C outside temperature
- Volume or area to be acclimatised: 3660 m²

Economic & ecologic key facts
- Installation costs: The cost of HP + well was 72,900 €

Geothermal heat exchanger details
- Distance between wells: 40 [m]

System performance
- Annual HP working hours: 2000 h
- Flow rate per well: Max. 20 m³/h
- Flow rate on the operation period: 7,5 m³/h
- Coefficient of performance (W10/W35): Monitoring from 01/01/2015 to 31/12/2015:
 - Electrical consumption = MWh (without pumping energy).
 - SPF = 3.02

Materials used
- Completion/backfilling material in wells: Well cemented on the upper 6 m.
- Heat pump working fluids (refrigerant): R410A

Geological & hydrological specifics
- Rough description of bedrock/aquifer:
 - 0 to 1 m depth: vegetal soil
 - 1 to 30 m depth: sand and gravels, alluvium]
- Aquifer specifics:
 - Thickness of aquifer: 30 m
 - Water level in borehole: -8 m
A ground-sourced heat pump to heat and cool a resort. Data collected with the courtesy of AFPG and CIAT. The Parador Resort encompasses 2 villas, a common building and one chapel. The thermal energy demand of these buildings is totally covered by the GSHP, both in heating and cooling. No backup is needed. The HP heating and cooling powers are respectively 112 kW and 103 kW. The geothermal solution has been chosen since there it is invisible, silent, and produces both heating and cooling with one system.

System usage

<table>
<thead>
<tr>
<th>Heating and cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy output</td>
</tr>
<tr>
<td>Practically demanded peak load: 50 kW</td>
</tr>
<tr>
<td>Volume or area to be acclimatised: 1.000 m²</td>
</tr>
<tr>
<td>Economic & ecologic key facts</td>
</tr>
<tr>
<td>Installation costs: estimated at 100.000 € (drilling and installation of probes: 50.000 € HT; heat pumps: 50.000 €)</td>
</tr>
<tr>
<td>Amortization: 8 a</td>
</tr>
<tr>
<td>Reduction of energy costs (incl. cooling, DHW etc.): Estimated annual savings: 13.000 €</td>
</tr>
</tbody>
</table>

Geothermal heat exchanger details

| Count and length of BHEs: 9 wells with a depth of 100 [m] each |
| Spacing of boreholes (BHEs): 10 m |

System performance

| Flow rate primary circuit at HP: 1.55 m³/h |

Materials used

| Heat transfer media/heat carrier fluid: water |

Parador Resort

PACA, Vence (France)

Borehole heat exchanger for heating and cooling

Altitude: **280 m**

Average annual outside temperature: **13.3 °C**

Time of geothermal heat exchanger implementation: **2014**
Industrial building “La Talaudière”
Rhône-Alps, 42 (France)
Borehole heat exchanger field for heating

Altitude: 507 m
Average annual outside temperature: 10.1 °C
Time of geothermal heat exchanger implementation: 2011

Heating of an industrial building through HP on 10 BHE 100 m deep

Data collected with the courtesy of ADEME (French Environment and Energy Management Agency), Regional Direction of Rhône-Alps-Auvergne.

The SAIB Connectique company designs and makes electronics devices. In 2010 they built their new 2039 m² factory. Geothermal energy was chosen. A 58 kW HP is connected to 10 100 m deep BHE. Offices are heated by a heating floor, while fan-coils are used for workshops. From June 2013 to June 2014, 55.6 MWh of heating have been produced by the HP, with a performance factor of 3.56. The project has been financially supported by the ADEME, with the objective of reducing the system amortization from 16 y to 6.5 y. Compared to a gas boiler, the yearly economy by the geothermal installation is estimated to be 3.9 k€.

System usage
- Heating only, permanent use

Energy output
- Annual energy output: 25 MWh
- Design values Heating: 25 MWh
- Monitored values from 18/06/2013 to 18/06/2014 Heating: 55.55 MWh
- Practically demanded peak load: 25 kW (design value, not monitored). The HP peak load is 58.3 kW.
- Volume or area to be acclimatised: 2.039 m²

Economic & ecologic key facts
- Installation costs: 242 k€
- Amortization: planned: 6.5 y with subsidy, would have been 16 y without subsidy.
- Reduction of energy costs (incl. cooling, DHW etc.): estimation compared to a boiler: 3.928 €/a [% or €/a]
- Avoided CO₂ emissions / CO₂ reduction: 5 t CO₂/y [% or t/a]

Geothermal heat exchanger details
- Count and length of BHEs: 12 BHE, 100 m deep [m]
- BHE type: BHE equipped with double-U, so 4800 m of pipes
- Flow temperature before HP: 0 °C
- Flow temperature after HP: -3 °C
- Specific abstraction capacity / cooling capacity for BHE: 57 W/m W/m

System performance
- Heat pump (HP) rated power (B0/W35): 58.3 kW. Model Dynaciat 240V serie LG (2 compressors)
- Seasonal performance factor: Monitored SPF from 18/06/2013 to 18/06/2014: SPF in heating = 3.56

Materials used
- Completion/backfilling material: Füllbinder EWM
- Heat transfer media/heat carrier fluid: water+glycol
- Heat pump working fluids (refrigerant): R410A

Details for Installation costs:
The total installation cost of a boiler was estimated to be 176.432 €. The overcost of the geothermal installation was 56.381 €. The ADEME founded 72 % of this (40.255 €).

<table>
<thead>
<tr>
<th>Cost (duty free)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trenches</td>
</tr>
<tr>
<td>Boiler room</td>
</tr>
<tr>
<td>Heating production</td>
</tr>
<tr>
<td>Network</td>
</tr>
<tr>
<td>BHE field</td>
</tr>
<tr>
<td>Design</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

This project is co-financed by the European Union through the Interreg Alpine Space programme
Altitude: 617 m
Outside temperature: 8.2 °C
Average heating degree days: 3910 Kday (base temperature 20 °C)
Time of geothermal heat exchanger implementation: 2011

The old drinking water springs of the municipality Benediktbeuern are used to heat the open-air pool. Since 2011 a heat pump (HP) replaced the oil heating, which consumed 44.000L fuel oil per season. The HP has a total heating capacity of 160kW and uses the water from a spring at the mountain side. Previously the spring provided drinking water for the municipality, but because of contamination problems they had to be abandoned, leaving the pipeline and the water unused.

<table>
<thead>
<tr>
<th>System usage</th>
<th>Heating only, seasonal use</th>
</tr>
</thead>
</table>
| Energy output | Annual energy output Heating: 330.000 kWh
Practically demanded peak load: Heating: 149 kW
Volume or area to be acclimatised: Pool with 1100 m³ water |
| Economic & ecologic key facts | Running costs/year: 60.000 kWh (HP) = 11.000 € [€/a]
Reduction of heating energy costs: 5.500 €/a at 50 €/100l
Avoided CO2 emissions / CO2 reduction: 56 t/a, 60 %
Increase of RES share: 100 %
Reduction of primary energy consumption: 75 % |
| Geothermal heat exchanger details | Catchment of spring: Three springs at 950 m a.s.l. are located at a aquitard layer (till) |
| System performance | Heat pump (HP) rated power (W10/W35): 149 kW
Combitherm HWW 2/400 R134e
Annual HP working hours: 1.600 h
Annual electricity consumption of the HP: 60.000 kWh/a
Flow rate spring: 5 - 8 l/s
Coefficient of performance (W10/W35): 5,5 |
| Materials used | Completion/backfilling material in wells: 1-10m gravel; 0-1m clay |
| Geological & hydrological specifics | Geological region: Northern Limestone Alps and Flysch
Rough description of bedrock/aquifer: Würm-glacial sediments (sandy-silty gravel), above clay-silt layers (till)
Groundwater temperature: Minimum: 5 °C
Maximum: 8 °C
Thickness of aquifer: 10 – 50 m |
GROB-WERKE Mindelheim
Unterallgäu (Germany)
 Groundwater heat pump for heating and cooling

Altitude: 608 m
Average annual outside temperature: 8.2 °C
Average heating degree days: 3900 Kday
Time of geothermal heat exchanger implementation: 1983/2012

Older apartment building with 35 flats.
The machinery at this site produces heat during operation, which has to be dissipated. This is done by thermal groundwater use from 9 wells distributed all over the site of the company. Groundwater is available in sufficient quality and quantity and near to surface to achieve high efficiency. The use of groundwater for heating office buildings and further cooling system are also foreseen.

System usage
| Heating and cooling, permanent use |

Energy output
| Volume or area to be acclimatised: 200,000 m² |

Economic & ecologic key facts
| Avoided CO₂ emissions / CO₂ reduction: 2,000 t/a |

Geothermal heat exchanger details
| Count / depth of wells: 8 wells | Distance between wells: 10 – 40 m | Flow- and return flow temp.: between 3 and 10 °C |

System performance
| Heat pump (HP) rated power (W10/W35): 140 kW | Flow rate per well: 15-158 m³/h |

Materials used
| Completion/backfilling material in wells: gravel | Heat pump working fluids (refrigerant): water |

Geological & hydrological specifics
Geological region: Prealps	Groundwater temperature: Average: 10 °C
Rough description of bedrock/aquifer: coarse grained Quaternary sediments	Thickness of aquifer: 6 - 8 m
Groundwater temperature: Average: 10 °C	Water level in borehole: 3 - 9 m
Hydraulic conductivity: 1,5 *10⁻² m/s m/s	
Funding
Total eligible costs: € 2.962.952,30
ERDF grant: € 2.308.232,96
16/12/2015 - 15/12/2018
Project duration
This project is co-financed by the European Union through the Interreg Alpine Space programme
Follow us on

Altitude: 490 m
Average annual outside temperature: 10 °C
Time of geothermal heat exchanger implementation: 2015

Five GeoKOAX borehole heat exchangers are used for heating and cooling of a house in Kranzberg.
Sine 2016 a heat pump (HP) replaced the oil heating, which had a heat output of 28 kW. The HP has a total heating capacity of 60 kW. It is connected to five borehole heat exchangers with a depth of 47 m each.

<table>
<thead>
<tr>
<th>System usage</th>
<th>Heating and cooling, permanent use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Additional non-NSGE installations: solar energy via photovoltaic</td>
</tr>
<tr>
<td>Energy output</td>
<td></td>
</tr>
<tr>
<td>Heating:</td>
<td>Annual energy output</td>
</tr>
<tr>
<td></td>
<td>Heating: 25.492 kWh</td>
</tr>
<tr>
<td>Practically demanded peak load: Heating:</td>
<td>149 kW</td>
</tr>
<tr>
<td>Volume or area to be acclimatised:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>369,2 m²</td>
</tr>
<tr>
<td>Economic & ecologic key facts</td>
<td></td>
</tr>
<tr>
<td>Final energy efficiency rating of the building:</td>
<td>29 kWh/(m²*a)</td>
</tr>
<tr>
<td>Running costs/year:</td>
<td></td>
</tr>
<tr>
<td>60.000 kWh (HP) = 11.000 €</td>
<td></td>
</tr>
<tr>
<td>Reduction of heating energy costs:</td>
<td></td>
</tr>
<tr>
<td>5.500 €/a at 50 €/100 l</td>
<td></td>
</tr>
<tr>
<td>Avoided CO₂ emissions / CO₂ reduction:</td>
<td></td>
</tr>
<tr>
<td>56 t/a 60 %</td>
<td></td>
</tr>
<tr>
<td>Increase of RES share:</td>
<td></td>
</tr>
<tr>
<td>100 %</td>
<td></td>
</tr>
<tr>
<td>Reduction of primary energy consumption:</td>
<td>75%</td>
</tr>
<tr>
<td>Geothermal heat exchanger details</td>
<td></td>
</tr>
<tr>
<td>Count and length of BHEs:</td>
<td></td>
</tr>
<tr>
<td>5 wells with a depth of 47[m] and an overall length of installed pipes of 470 m</td>
<td></td>
</tr>
<tr>
<td>Spacing of boreholes (BHEs):</td>
<td></td>
</tr>
<tr>
<td>ca. 5 m</td>
<td></td>
</tr>
<tr>
<td>BHE type:</td>
<td></td>
</tr>
<tr>
<td>GeoKOAX</td>
<td></td>
</tr>
<tr>
<td>Flow temperature before HP:</td>
<td></td>
</tr>
<tr>
<td>1 - 27 °C</td>
<td></td>
</tr>
<tr>
<td>Flow temperature after HP:</td>
<td></td>
</tr>
<tr>
<td>-2,5 – 22,7 °C</td>
<td></td>
</tr>
<tr>
<td>(Minimum and maximum values between 15.02.2016 and 27.03.2016 and between 07.07.2016 and 12.07.2016)</td>
<td></td>
</tr>
<tr>
<td>System performance</td>
<td></td>
</tr>
<tr>
<td>Heat pump (HP) rated power (B0/W35):</td>
<td></td>
</tr>
<tr>
<td>7,2 – 20,1 kW</td>
<td></td>
</tr>
<tr>
<td>Heliotherm HP205-M-WEB</td>
<td></td>
</tr>
<tr>
<td>Flow rate primary circuit at HP:</td>
<td></td>
</tr>
<tr>
<td>1,5 – 2,5 m³/h</td>
<td></td>
</tr>
<tr>
<td>Annual HP working hours:</td>
<td>1600 h</td>
</tr>
<tr>
<td>Coefficient of performance (B0/W35):</td>
<td>5.5</td>
</tr>
<tr>
<td>Annual electricity consumption of the HP:</td>
<td>60.000 kWh/a</td>
</tr>
<tr>
<td>Materials used</td>
<td></td>
</tr>
<tr>
<td>Completion/backfilling material:</td>
<td></td>
</tr>
<tr>
<td>GeoSOLID 240 HS used for BHE1-3 WE 1.4 HS used for BHE4-5</td>
<td></td>
</tr>
<tr>
<td>Heat transfer media/heat carrier fluid:</td>
<td>Coracon GEKO AF-8</td>
</tr>
<tr>
<td>Heat pump working fluids (refrigerant):</td>
<td>R410A</td>
</tr>
<tr>
<td>Geological & hydrological specifics</td>
<td></td>
</tr>
<tr>
<td>Geological region: Upper Freshwater Molasses (Tertiary)</td>
<td></td>
</tr>
<tr>
<td>Rough description of bedrock:</td>
<td></td>
</tr>
<tr>
<td>sandy gravel with layers of silt and sand in between</td>
<td></td>
</tr>
<tr>
<td>Thermal conductivity of the soil:</td>
<td></td>
</tr>
<tr>
<td>1 - 1,4 W/mK</td>
<td></td>
</tr>
<tr>
<td>Avg. ground temp.:</td>
<td></td>
</tr>
<tr>
<td>In 0,5 m depth: 11,2 °C</td>
<td></td>
</tr>
<tr>
<td>In 45 m depth: ca. 10 °C</td>
<td></td>
</tr>
<tr>
<td>Thickness of aquifer:</td>
<td></td>
</tr>
<tr>
<td>8 – 20 m</td>
<td></td>
</tr>
<tr>
<td>Water level in borehole:</td>
<td>40 m</td>
</tr>
<tr>
<td>Hydraulic conductivity:</td>
<td>0,001 -0,005 m/s</td>
</tr>
</tbody>
</table>
Altitude: 607 m
Average annual outside temperature: 7.6 °C
Average heating degree days: 4108 Kday (base temperature 20 °C)

Borehole Heat Exchanger Array for 22 accommodation units.
At Kempten, Bavaria 72 double-U BHE with 150 m depth each are installed for the heating of 22 accommodation units. A detailed FE-model was validated with depth-related temperature measurements at two locations: first, at the groundwater monitoring well, to record the impact of BHEs operation and second, at the groundwater monitoring well, to record the impact of BHEs operation.

System usage
Heating only, permanent use including seasonal peaks

Energy output
Volume or area to be acclimatised: 1100 m²

Economic & ecologic key facts
Running costs/year: 4300 €/a

Geothermal heat exchanger details
Count and length of BHEs: 72 wells with a depth of 150 m each. Overall length of installed pipes (150 x 4) x 72 = 43.200 m
BHE type: double-U

System performance
Heat pump (HP) rated power (B0/W35): 140 kW

Materials used
Completion/backfilling material: grouting from Schenk AG with thermal conductivity of ca. 2 W(m·K)
Heat transfer media/heat carrier fluid: Ethylene glycol

Geological & hydrological specifics
Rough description of bedrock: Lower Triassic sedimentary basin consist of alternating sandstones, mudstones and marlstones with calcareous cement.
Thermal conductivity of the soil: 2.5 W/(m·K) – 3.1 W/(m·K)
Avg. Ground temperature: 9.3 °C
Altitude: **790 m**

Average annual outside temperature: **6.8 °C**

Average heating degree days: **4.100 Kday** (base temperature 20 °C)

Time of geothermal heat exchanger implementation: **2016**

Heated railway switches Oberstaufen

Oberallgäu (Germany)

Borehole heat exchanger

Two equivalent systems of one railway switch pair each with geothermal heating from a GSHP at the railroad crossing Kalzhofer Street, Oberstaufen and at the tunnel entrance, Rainwaldstreet 10, Oberstaufen. Caution: Some of the following numbers refer to both systems.

Four snow and ice free railroad switches with GSHP heating. Normally electric heating panels are attached to a switch to keep it ice free during winter, but Triple-S invented a system for passive or active heating via HP with a specially designed heat exchanger. Enhanced to the two systems is a weather station at each location, which monitors the relevant atmospheric parameter to anticipate the correct heat demand.

<table>
<thead>
<tr>
<th>System usage</th>
<th>Heating only, seasonal use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy output</td>
<td></td>
</tr>
<tr>
<td>Annual energy output heating: 26.720 kWh for both systems</td>
<td>Practically demanded peak load heating: 33.4 kW for both systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Economic & ecologic key facts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation costs: 238,000 € for both systems</td>
<td>Running costs/year: 15,000 €/a with 0.56 €/kWh for both systems</td>
</tr>
<tr>
<td>Reduction of heating energy costs: 70 - 75 % (Theoretical value, because systems don’t replace an old electrical heating)</td>
<td>Increase of RES share: 100 % Reduction of primary energy consumption: 70 – 75 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geothermal heat exchanger details</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Count and length of BHEs: System 1: 4 boreholes with a depth of 50 m each and a total length of all installed pipes of 800 m</td>
<td>Spacing of boreholes (BHEs): 7 m at crossing, 6 m at tunnel</td>
</tr>
<tr>
<td>System 2: 3 boreholes at a tunnel one with a depth of 99 m two with 60 m, length of installed pipes 879 m</td>
<td>BHE type: double-U BHE both systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System performance</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat pump (HP) rated power (B0/W35): 22.5 kW at 50/W35 at ΔT 10K</td>
<td>Flow rate primary circuit at HP: 2.6 m³/h 0.65 m³/h per BHE</td>
</tr>
<tr>
<td>Annual HP working hours: 60 – 800 h depending on winter</td>
<td>Annual electricity consumption of the HP: 8.3 kW 500 - 6.640 kWh/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materials used</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion/backfilling material: ThermoCem Plus</td>
<td>Heat transfer media/heat carrier fluid: 70% Water und 30% Glykol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geological & hydrological specifics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geological region: Allgäuer Molasse</td>
<td>Thermal conductivity of the soil: TRT with pure water: 2.2 W/mK</td>
</tr>
<tr>
<td>Vorberge</td>
<td>Ground temperature: 10.7 °C (avg.)</td>
</tr>
<tr>
<td>Rough description of bedrock: sandy gravel, few silt layers <2m</td>
<td>Water level in borehole: 12.6 m</td>
</tr>
</tbody>
</table>

This project is co-financed by the European Union through the Interreg Alpine Space programme

- **Project duration**: 16/12/2015 - 15/12/2018
- **Funding**: Total eligible costs: 2,962,952,30 €, ERDF grant: 2,308,232,96 €
Heated railway switches Oberstdorf
Oberallgäu (Germany)
Borehole heat exchanger GeoKOAX

In Oberstdorf 20 railroad switches will be heated with near surface geothermal energy. All switches will be heated from a Borehole heat exchange field with 20 heat exchangers, each 43 m long. The control and regulation technology is stored in a single station together with two heat pumps (see photo above) at Bahnhofsstraße 14 in Oberstdorf.

GeoKOAX heat exchanger: Normally electric heating panels are attached to a switch to keep it ice free during winter, but Triple-S invented a system for passive or active heating via HP with a specially designed heat exchanger. Enhanced to the system is a weather, which monitors the relevant atmospheric parameter to anticipate the correct heat demand.

<table>
<thead>
<tr>
<th>System usage</th>
<th>Heating only, seasonal use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy output</td>
<td>Practically demanded peak load: Heating: 21 kW</td>
</tr>
<tr>
<td>Economic & ecologic key facts</td>
<td>Installation costs: 560,000 €</td>
</tr>
<tr>
<td></td>
<td>Running costs/year: 8366,4 €/a with 0,56 €/kWh for both systems</td>
</tr>
<tr>
<td></td>
<td>Reduction of heating energy costs: 70 - 75 %</td>
</tr>
<tr>
<td></td>
<td>Theoretical value, because systems don’t replace the old butane gas heating</td>
</tr>
<tr>
<td>Geothermal heat exchanger details</td>
<td>Count and length of BHEs: 20 boreholes with a length of 43 m each (total: 1147 m)</td>
</tr>
<tr>
<td></td>
<td>Spacing of boreholes (BHEs): 6 m</td>
</tr>
<tr>
<td></td>
<td>BHE type: GeoCOAX</td>
</tr>
<tr>
<td></td>
<td>Specific abstraction capacity / cooling capacity of BHE: 1,4 – 1,6 W/(m*K)</td>
</tr>
<tr>
<td>System performance</td>
<td>Heat pump (HP) rated power (B0/W35): 2 x 45 kW (2x 2SW300)</td>
</tr>
<tr>
<td></td>
<td>Annual HP working hours: 60 – 900 h</td>
</tr>
<tr>
<td></td>
<td>Annual electricity consumption of the HP: 2 x 10,5 kW. 1.260 – 18.900 kWh/a</td>
</tr>
<tr>
<td></td>
<td>Flow rate primary circuit at HP: 11 m³/h per heat pump</td>
</tr>
<tr>
<td></td>
<td>22 m³/h both</td>
</tr>
<tr>
<td></td>
<td>1,1 m³/h per BHE</td>
</tr>
<tr>
<td></td>
<td>Coefficient of performance (B0/W35): 4,3 50/W35 at ΔT 10K</td>
</tr>
<tr>
<td></td>
<td>SPF f after EnEV: Highly weather dependent, see working hours of HP!</td>
</tr>
<tr>
<td>Materials used</td>
<td>Completion/backfilling material: Schwenk Füllbinder EWM</td>
</tr>
<tr>
<td></td>
<td>Heat transfer media/heat carrier fluid: 70 % Water und 30 % Glykol</td>
</tr>
<tr>
<td></td>
<td>Heat pump working fluids (refrigerant): R407C (4,78 kg with 30 bar)</td>
</tr>
<tr>
<td>Geological & hydrological specifics</td>
<td>Geological region: Allgäuer Alpen, Holocene to quaternary fluviatile</td>
</tr>
<tr>
<td></td>
<td>Rough description of bedrock: gravel, few sandy gravel layers <2m</td>
</tr>
<tr>
<td></td>
<td>Water level in borehole: 26.20 m</td>
</tr>
</tbody>
</table>
In order to make the noise test site of a lorry manufacturer independent from weather conditions, a heated area has been incorporated, driven by a 75 kW ground water heat pump. The heating pipes are covered in melted asphalt, i.e. have to withstand temperatures of up to 240 °C. Purpose of the installation: For testing and approval purposes, dry road conditions are required for noise measurements. In order to ensure a sufficient availability of the test site, surface heating is required to eliminate moisture and snow from the test area, which consists of the driving path and triangular extension, at the tip of which the microphones are positioned.

Altitude: 491 m
Average annual outside temperature: 7,5 °C
Average heating degree days: 3830 Kday (base temperature 20 °C and threshold temp of 15 °C)
Time of geothermal heat exchanger implementation: 2010

<table>
<thead>
<tr>
<th>System usage</th>
<th>Heating, drying and snow melting</th>
</tr>
</thead>
</table>
| Energy output | Annual energy output heating: 140,000 kWh
Practically demanded peak load: Heating: 75 kW |
| Economic & ecologic key facts | Installation costs: 135,000 €
Electricity source: DE mix
Running costs/year: 5,500 €
Reduction of heating energy costs: 56 % or 4650 €
Avoided CO2 emissions: 67 % or 29 t/a
Reduction of primary energy consumption: 50 % |
| Geothermal heat exchanger details | Count and depth of wells: 2 wells / 60 m
Production well: 12 m
Infiltration well: 12 m
Distance between wells: 45 m
Borehole diameter: 470 mm
Well tube diameter: 419 mm
Minimal flow- and return flow temp heating: 70 °C |
| System performance | Heat pump (HP) rated power (W10/W35): 75 kW
Annual HP working hours: 2500 h
Annual electricity consumption of the HP: 140,000 kWh/a
Flow rate per well: 25 m³/h
HP operation mode: monovalent
Heat pump name: Alpha Innotec SWP 820-B6/W53 |
| Materials used | Submersible pump type: WILO KD 25
Heat pump working fluids (refrigerant): R407C |
| Geological & hydrological specifics | Geological region: Molasse zone
Rough description of bedrock: Quaternary gravel, peat
Ground temperature Avg.: 10 °C, Min.: 9 °C |
Underneath a railway bridge over the Bergsonstraße in Munich there is a ground water reservoir which in some sections penetrates and covers the road. Additionally, some rainwater trickles through joints of the bridge. In winter time, this water froze to massive ice shields which only could have been removed mechanically. As a counter measure, the road has been equipped with heating pipes. Up to a temperature of -8°C, the ground water with temperature of 12°C all year can be used directly. Only at lower temperatures, water from a buffer tank with a temperature of 35°C is being used. This water is being heated by a 45 kW heat pump. Due to the warm ground water and the shielding effect of the bridge above, the heat pump however has to be operated very few hours per year (typically 15) only. As the road surface is made from asphalt, special pipes had to be used.
Football stadium heating
Augsburg, Bavaria (Germany)
Groundwater heat pump

Altitude: 500 m
Avg. annual outside temperature: 8.3 °C
Time of geothermal heat exchanger implementation: 2009

Description of installation:

- **Short general description:**
 - Location: Bürgermeister-Ulrich-Str. 90 in 86199 Augsburg, a city 50 km northwest of Munich
 - 30,660 visitors + staff
 - In 2009 a groundwater heat pump heating system was integrated in the construction of a new stadium
 - Heating of the playing field, players’ cabins, business lounges/club and offices

- **Key features of the hole system:**

 From two deep wells on the west of the stadium the water is transported through circulating pumps towards two plate heat exchangers. Within a second water cycle the detracted heat is processed in the heat pumps and forwarded to the hot water buffer tank which transmits the water to the heaters. In case of high heat requirement, a natural gas peak load boiler can be connected. An emergency generator is available. Electricity for compressors and control devices is derived by a substation next to and right at the stadium. Return of the water into the ground is seeped through discharge wells.

<table>
<thead>
<tr>
<th>System usage</th>
<th>Heating, and free cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional non-NSGE installations:</td>
<td>natural gas peak load boiler, emergence generator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy output</th>
<th>Annual energy output heating: 280,000 kWh</th>
<th>Practically demanded peak load: Heating: 150 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume or area to be acclimatised:</td>
<td>450 m²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Economic & ecologic key facts</th>
<th>Electricity source: DE mix</th>
<th>Avoided CO2 emissions: 97 t/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geothermal heat exchanger details</td>
<td>Count and depth of wells: 2 wells á 45 m</td>
<td>Well tube diameter: 83 cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System performance</th>
<th>Flow rate per well: 100 m³/h</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Geological & hydrological specifics</th>
<th>Ground temp.: Avg. 9.5 °C, Min. 8 °C, Max. 11 °C</th>
</tr>
</thead>
</table>
Mammut Logistik- und Verwaltungszentrum
Wolfertschwenden, Bavaria (Germany)
Groundwater heat pump

| Altitude: **678 m** | Avg. annual outside temperature: **7,2 °C** |

System usage: Heating and free cooling

Energy output: Heating: 423 kW, Cooling: 160 kW

Geothermal heat exchanger details: Two production wells with depths of 52 and 31,5 m
Depth of Infiltration well: 42,3 m

System performance: Flow rate: 61,2 m³/h

Swabian media publishing house
Ravensburg, Baden-Württemberg (Germany)
Borehole heat exchanger field

| Altitude: **437 m** | Avg. annual outside temperature: **8,8 °C** |

The Heating and Cooling of this building complex is solely provided by geothermal energy.

System usage: Heating and free cooling for 8803 m²

Energy output: Heating: 292 kW, Cooling: 292 kW

Geothermal heat exchanger details: 54 boreholes with a depth of 140 m each.

Geological & hydrological specifics: Thermal conductivity of the underground: 2,2 W/(m K)
Average ground temperature: 12,6 °C

Winterhalter Gastronom GmbH
Meckenbeuren, Baden-Württemberg (Germany)
Borehole heat exchanger field

| Altitude: **437 m** | Avg. annual outside temperature: **8,8 °C** |

System usage: Heating and free cooling for 7300 m²

Energy output: Heating: 115 kW, Cooling: 140 kW

Geothermal heat exchanger details: 40 boreholes with a depth of 60 m each.
Bar-Restaurant ‘Pit-Stop’
Valle d’Aosta (Italy)
Borehole heat exchanger and vertical heat collectors

The GSHP plant at highest altitude in Europe is used to meet the energy demand of a bar-restaurant in winter days. The bar & restaurant “Pit Stop” on the Pancheron ski track in Cervinia (Aosta) is heated by a shallow geothermal system designed and built by GEONOVIS. A 60 kW heat pump is connected to 6 Borehole Heat Exchangers (BHEs). Large heat storage tanks are installed for the peak shaving of thermal loads. Heat extraction from the ground is reduced through the recovery of heat from the kitchen wastewater and through the recharge with solar thermal collectors during summer.

System usage
- Heating and domestic hot water production, seasonal use
- Additional non-NSGE installations: solar thermal system, waste water heat recovery system

Energy output
- Annual energy output
 - Heating: 80 MWh
 - DHW: 20 MWh
- Practically demanded peak load: Heating: 56 kW
- Volume or area to be acclimatised: 1.600 m³

Economic & ecologic key facts
- Installation costs: 120.000 €
- Amortization: 7-10 a

Geothermal heat exchanger details
- Count and length of BHEs: 6 boreholes with a depth of 200 m, length of overall installed pipes 1.200 m
- Spacing of boreholes (BHEs): 12 m

System performance
- Heat pump (HP) rated power (B0/W35): 60 kW
- Annual HP working hours: 1200 h
- Annual electricity consumption of the HP: 21 MWh/a
- Coefficient of performance (B0/W35): 4.3

Materials used
- Heat transfer media/heat carrier fluid: water/glycol mixture (35% glycol)

Geological & hydrological specifics
- Geological region: Pennine Alps, Cervino/Matterhorn
- Rough description of bedrock: gravel-sand matrix with polygenic rocks. Metamorphic cracks at 50 - 60 m depth. Water infiltrations during perforations at 40 - 50 m depth.

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Average heating degree days: 4524 Kday (base temperature 20 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average annual outside temperature: 2 °C</td>
<td>Time of geothermal heat exchanger implementation: 2014</td>
</tr>
</tbody>
</table>

This project is co-financed by the European Union through the Interreg Alpine Space programme. Project duration: 16/12/2015 - 15/12/2018. Funding: Total eligible costs: 2.962.952,30 €. ERDF grant: 2.308.232,96 €.
The Chaberton residence is heated by a ground source heat pump which produces also DHW for users.

A GSHP provides heating and DHW for a block of apartments used as a second home for the holidays. A fractured dolomite aquifer was intercepted by Borehole Heat Exchangers, with very high groundwater flow velocities. The ground is therefore characterized by an outstanding thermal exchange capacity, which allowed for a significant saving in drilling expenses and a very high COP of the heat pump.

Domestic hot water boilers and storage volume is 2 x 1000 l. If the setpoint for DHW (50-55 °C) is not achieved by HPs, oil burners start. Error between energy actually provided by the HP and design value < 1%.

System usage
- Heating and domestic hot water, permanent use including seasonal peaks
- Additional non-NSGE installations: 2 x 27 Kw oil burners

Energy output
- **Annual energy output**
 - Heating: 90.7 MWh/a
 - DHW: 22.7 MWh/a
- **Practically demanded peak load**: Heating: 68 kW at –17 °C
- **Volume or area to be acclimatised**: 3 floors, 27 apartments, 2.300 m² heated with radiating floor panels at low temperature

Economic & ecologic key facts
- **Installation costs**: 99.000 € + 65.000 € for BHE drilling and installing
- **Final energy efficiency rating of the building**: A Class (<30 kWh/m²/a)
- **Running costs/year**: 9.600 €/a
- **Energy demand covered by the HP**: 78.0% heating, 50.3% DHW

Geothermal heat exchanger details
- **Count and length of BHEs**: 5 boreholes with a length of 170 m each, overall length of installed pipes 850 m
- **Spacing of boreholes (BHEs)**: 15 m

System performance
- **Heat pump (HP) rated power (B0/W35)**: 2 x 21 kW HPs in cascade, integrated by oil burners.
- **Annual HP working hours**: 1.949 h
- **Coefficient of performance (B0/W35)**: 4.6 for heating, 3.2 for DHW
- **Seasonal performance factor**: 14.8

Materials used
- **Completion/backfilling material**: Grout thermoplast Laviosa
- **Heat transfer media/heat carrier fluid**: water/glycol mixture (25% propylene glycol)
- **Heat pump working fluids (refrigerant)**: R407

Geological & hydrological specifics
- **Geological region**: Western Alpes - Monviso/Monginevro
- **Rough description of bedrock**: pale white-yellow dolostones with fine granulometry and saccharoids present in large banks with shallow clayish interpositions, laying on a level of compact crystalline limestone located at 150 m
- **Thermal conductivity of the soil**: 2.77 W/m/K
- **Ground temperature**: 10 °C (avg.)
- **Hydraulic conductivity**: High-velocity gw flow: 7.6E-5 m/s
- **BHE thermal resistance**: 0.104 mK/W
A geothermal plant to power the new bus and train garage in Croviana, a small municipality of Valle di Sole. Trentino Trasporti S.p.a built a plant that combine the shallow geothermal plant with a photovoltaic system to cover the heating and cooling demand of a bus and train garage in Croviana (Trentino). The geothermal plant peak powers are: about 200 kW thermal for heating in winter, about 100 kW refrigerators for summer cooling as free-cooling and about 200 kW of photovoltaic array. The geothermal field consists of 39 PE-Xa probes, each of a depth of 130m, for a total length of 5.070 m. The carrier heat fluid is a mix of water and glycol, with no major impact on the soil in case of leaking. The geothermal system consists of two geothermal heat pumps, which produce hot water for the floor based heating system and for domestic uses (with a dedicated isolated thermal storage). The geothermal field allows also to cool the building thanks to the employment of a heat exchanger. The first meters of connection pipes of the geothermal probe field have been properly insulated in order to avoid the thermal impact on the biotic layer of the soil. The exchange of geothermal energy takes place in depth, in a closed circuit and is accomplished without extraction or re-introduction of fluids in the soil nor on the surface.

System usage
- Heating, cooling and domestic hot water, seasonal use
- Additional non-NSGE installations: Photovoltaic system

Energy output
- Annual energy output
 - Heating: 760 MWh/a
- Practically demanded peak load: Heating: 200 kW
- Volume or area to be acclimatised: 5.700 m³

Economic & ecologic key facts
- Installation costs: ~1.1 M€
- (geothermal probes: ~300 k€, underfloor heating system: ~290 k€, photovoltaic system: ~480 k€)
- Amortization: <12 a
- Final energy efficiency rating of the building: 133 kWh/m²/a

Geothermal heat exchanger details
- Count and length of BHEs: 39 boreholes with a length of 130 m each, overall length of installed pipes 5.070 m

System performance
- Heat pump (HP) rated power (B0/W35): 200 kW
- Annual electricity consumption of the HP: 200 MWh/a
- Coefficient of performance (B0/W35): 3.8
- Seasonal performance factor: 13

Materials used
- Heat transfer media/heat carrier fluid: water/glycol mixture
Maison Lostan

Location: Aosta town, Aosta valley (Italy)

Groundwater heat pump for heating and cooling

Located in the historical center of Aosta, the building has been restored by the regional administration with the purpose of allocating the new headquarters of the Superintendence of Cultural Heritage.

A first proposal was to construct a plant with a geothermal source of the type “closed” by adopting geothermal probes that reached a depth of 150 - 200 m – the procedure being simultaneously controlled through a continuous archaeologic monitoring. An “open loop” solution has been finally preferred, because of the several issues arisen related to the construction procedure and the specific historical context. At last, the decision has been to drill two withdrawal wells – one alternative to the other – 55 m deep. Reinjection occurs in a close drain since groundwater reinjection is currently forbidden in the Aosta Valley region.

System usage

<table>
<thead>
<tr>
<th>Energy output</th>
<th>Heating and cooling, permanent use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual energy output
Heating: 300,000 kWh
Cooling: 50,000 kWh</td>
<td>Practically demanded peak load:
Heating: 300 kW (thermal load)</td>
</tr>
</tbody>
</table>

Economic & ecologic key facts

| Installation costs: 3,166,000 € (total cost of electrical and mechanical systems); of which 1,300,000 €, just HVAC system | Final energy efficiency rating of the building: 41.7 kWh/(m²*a) (primary energy for heating) |
| Amortization: N.a. (there was no HVAC system in the building before this installation) | Running costs/year: 13,300 €/a (energy for heating) |

Geothermal heat exchanger details

<table>
<thead>
<tr>
<th>Count / depth of wells:
70 m (just suction, reinjection in a close drain)</th>
<th>Flow temperature before HP: 11 °C
Flow temperature after HP: 7 °C</th>
</tr>
</thead>
</table>

System performance

| Heat pump (HP) rated power (W10/W35): 448 kW (heating)
Annual HP working hours: 4,392 h (conventional heating season) | Flow rate per well: 70 m³/h
Annual electricity consumption of the HP: 78.125 kWh/a (electricity for heating) | Coefficient of performance (W10/W35): 3.84
Seasonal performance factor: 13 |

Materials used

| Heat transfer media/heat carrier fluid: water | Heat pump working fluids (refrigerant): R410A |

Geological & hydrological specifics

| Geological region: metamorphic rocks
Rough description of bedrock/aquifer: Quaternary sediments | Thermal conductivity of the soils and rocks: 1-2.5 W/mK
Average ground temperature: 12°C | Thickness of aquifer: 100 m
Water level in borehole: 25 m
Hydraulic conductivity: 10⁻⁴ m/s |
Altitude: **120 m**
Average annual outside temperature: **12 °C**
Average heating degree days: **2404 Kday** (base temperature 20 °C)
Time of geothermal heat exchanger implementation: **2010**

The complex named “Palazzo Lombardia” in Milan is the new headquarters of Region Lombardia, which was completed in July 2010. The complex includes the offices of the regional administration, an auditorium, restaurants and supermarkets. Since the area of the town is characterized by a very productive aquifer at a depth comprised between 20 and 50 m, with a temperature of about 15°C, a Ground Water Heat Pump (GWHP) system with 3 Heat Pumps was installed for heating and cooling purposes. Heat pumps are able to fully meet the winter heating load and therefore the conventional boilers installed will act only as reserve units in case of exceptional heating demand. Water is discharged in a surface ditch after the heat exchange. Heat distribution systems consist of chilled beams and air handling unit heat exchangers circuits, the delivery and return temperatures are respectively 48/40 °C. The chilled water production for summer air conditioning, in addition to heat pumps, is obtained by other water cooled chillers.

The largest building in the world fully heated and cooled by means only of geothermal sources, represented by ground water with the utilization of heat pumps.

<table>
<thead>
<tr>
<th>System usage</th>
<th>Heating and cooling, permanent use</th>
<th>Additional non-NSGE installations: photovoltaic array (2000 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy output</td>
<td>Practically demanded peak load: Heating: 6.3 MW Cooling: 13 MW</td>
<td>Volume or area to be acclimatised: 140,000 m²</td>
</tr>
<tr>
<td>Geothermal heat exchanger details</td>
<td>Count / depth of wells: 8 boreholes with a length of 50 m, overall length of installed pipes 400 m</td>
<td>Flow temperature before HP: 14 °C (Winter), 16°C (Summer) Flow temperature after HP: 12 °C (Winter), 22° C (Summer)</td>
</tr>
<tr>
<td>System performance</td>
<td>Flow rate per well: 144 m³/h</td>
<td>Coefficient of performance (W10/W35): 4.5 heating 6.0 cooling</td>
</tr>
</tbody>
</table>
An open-loop Ground Water Heat Pump (GWHP) plant is used to produce cooling to maintain the ice rink and heating for locker rooms of the building.

The obsolescent refrigeration system of the ice rink has been replaced with two ammonia GWHPs after the ban of R22 refrigerant within the EU countries. High-efficiency ground water heat pumps were installed. The main aim of the project was to reduce the energy consumption to produce and maintain the ice for the rink, reducing at the same time the CO₂ emissions and increasing the overall reliability of the plant. The system exchanges heat with ground water flow abstracted from 2 wells at 32 m depth; the water is then reinjected in the same unconfined aquifer through a single well located 180 m downstream near the building. The system provides cooling for the ice rink and hot water (30-40 °C) for space heating.

System usage

<table>
<thead>
<tr>
<th>Heating and cooling, seasonal use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy output</td>
</tr>
<tr>
<td>Annual energy output</td>
</tr>
<tr>
<td>Cooling: 750 MWh/a</td>
</tr>
<tr>
<td>Practically demanded peak load:</td>
</tr>
<tr>
<td>Volume or area to be acclimatised:</td>
</tr>
<tr>
<td>180 m² Ice rink, 120 m² Lockers room</td>
</tr>
</tbody>
</table>

Economic & ecologic key facts

| Installation costs: 780.000 € |
| Amortization: <10 a (incentives excluded) |
| Running costs/year: 60.000 €/a |
| Reduction of heating energy costs: 40 % |
| Reduction of energy costs (incl. cooling, DHW etc.): 40 % |

Geothermal heat exchanger

| Count / depth of wells: 2 Production wells, 1 Infiltration well |
| Production well(s): 32 m each, Infiltration well(s): 30 m |
| Distance between wells: 180 m |
| Flow temperature before HP: 8 °C |
| Flow temperature after HP: 11 °C |

System performance

| Heat pump (HP) rated power (W10/W35): 720 kW |
| Annual electricity consumption of the HP: 150.000 kWh/a |
| Flow rate per well: max. 130 m³/h |
| Coefficient of performance (W10/W35): 5 |
| Seasonal performance factor SPF a⁺a⁻: 6 |

Materials used

| Completion/backfilling material in wells: Wells casing is steel zinc-coated, indoor distribution pipes are insulated stainless steel and the ice rink piping is HDPE. Upper 6 m of the wells casing is cemented, piezometers and wellheads are completed with manholes and inspection chambers. |
| Heat pump working fluids (refrigerant): R717 |
| Heat transfer media/heat carrier fluid: water/glycol mixture |

Geological & hydrological specifics

| Geological region: NE Alpine Range, Fella river valley. |
| Rough description of bedrock/aquifer: Mesozoic limestones and sand-stones outcropping on the valley flanks. The valley is filled by fluvio-glacial sediments with a thickness of up to about 100 m. The production wells are very close to the eastern flank of the valley and reach almost the bedrock. |
| Thickness of aquifer: 100 m |
| Water level in borehole: 3 – 6 m |
| Hydraulic conductivity: ~5x10⁻² m/s |
Municipal and registry office

Milano, Lombardia (Italy)

Groundwater heat pump for heating, cooling and domestic hot water

The installation is based on a centralized system that is constituted by 2 heat pumps that are located within a technical room sited next to one of the two buildings. Each building has its own unit for the heating and cooling distribution. The geothermal system is constituted by two groundwater wells located at 30 m depth. Each well is equipped with two groundwater pumps. The heating and cooling is performed by means of both roof and floor radiant panels. The heating and cooling system works in combination of a “Forced Air Ventilation System”. The heat pumps are powered by photovoltaic panels. The data was collected with the courtesy of Directorate of Energy Environment and Sustainable Development (Regione Lombardia).

System usage

- Heating, cooling and domestic hot water production, permanent use
- Additional non-NSGE installations: Forced air ventilation system, photovoltaic panels

Energy output

- Annual energy output:
 - Heating: 237,069 kWh
 - Cooling: 73,190 kWh
- Practically demanded peak load:
 - Heating: 180 kW
 - Cooling: 210 kW
- Volume or area to be acclimatised: 8,515 m³

Economic & ecologic key facts

- Installation costs: 534,000 €
- Final energy efficiency rating of the building:
 - Registry + municipal build. = 53.61 kWh/(m²*a) and 3.51 kWh/(m²*a);
 - Library build. = 90.73 kWh/(m²*a)

Geothermal heat exchanger details

- Count / depth of wells:
 - 1 Production well(s): 30 m
 - 1 Infiltration well(s): 30 m

System performance

- Heat pump (HP) rated power (W10/W35):
 - 235 kW in heating and
 - 245 kW in cooling
- Average Flow rate per well:
 - 30.6 m³/h
 - Maximum Flow rate per well:
 - 46.8 m³/h
- Coefficient of performance (W10/W35): 4.8

Geological & hydrological specifics

- Geological region: Alluvial valley of the Po Plain
- Rough description of bedrock/aquifer: alluvial deposits
- Thickness of aquifer: >30 m

Altitude: **120 m**

- Average annual outside temperature: **13 °C**
- Average heating degree days: **2250 Kday**
 (base temperature 20 °C)
- Time of geothermal heat exchanger implementation: **2010**

This project is co-financed by the European Union through the Interreg Alpine Space programme.

Project duration

16/12/2015 - 15/12/2018

Funding

- Total eligible costs: 2,962,952.30 €
- ERDF grant: 2,308,232.96 €
District heating Ostana
Piemonte (Italy)

Groundwater heat pump for heating and domestic hot water

<table>
<thead>
<tr>
<th>System usage</th>
<th>Heating and domestic hot water production</th>
</tr>
</thead>
</table>
| Energy output | Annual energy output for heating: 20304 kWh, for DHW: 8884 kWh
Volume or area to be acclimatised: 1776 m³ |
| Economic & ecologic key facts | Installation costs: 241,000 €+VAT
Final energy efficiency rating of the building: 49.9 [kWh/(m²*a)]
Running costs/year: 5837 €
Reduction of heating power costs: 2100 €
Increase of RES share: 56 %
Reduction of primary energy consumption: 40 % |
| System performance | Heat pump (HP) rated power (W10/W35): 116,89 kW
Annual HP working hours: 1250 h
Annual energy consumption of the HP: 22247 kWh/a
Coefficient of performance (W10/W35): 4.8
Seasonal performance factor of heat pump (HSPF): 5.81 |
| Geological & hydrological specifics | Geological region: Western Alps
Thermal conductivity of the soils and rocks: 2.9 W/m K
Avg. ground temp.: 13 °C |
Museo Egizio
Piemonte (Italy)

Groundwater use for heating, cooling and domestic hot water

Altitude: 240 m
Average annual outside temperature: 13.9 °C
Average heating degree days: 3900 K-day ± 200 Kday (base temperture 20 °C)
Time of geothermal heat exchanger implementation: 2015

<table>
<thead>
<tr>
<th>System usage</th>
<th>Heating, cooling and domestic hot water, permanent use with seasonal peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Additional non-NSGE installations: 2 condensing boilers (850 kW)</td>
</tr>
<tr>
<td>Energy output</td>
<td>Peak load: 857 kW (cooling); 860 kW (heating)</td>
</tr>
<tr>
<td>Economic & ecologic key facts</td>
<td>Amortization: 7-8 years</td>
</tr>
<tr>
<td></td>
<td>Reduction of heating power costs: 80k €/y</td>
</tr>
<tr>
<td>System performance</td>
<td>Flow rate per well: 6.9 x 2 m³/h</td>
</tr>
<tr>
<td>Geological & hydrological specifics</td>
<td>Geological region: Po Plain</td>
</tr>
<tr>
<td></td>
<td>Rough description of bedrock: Quaternary and actual sands & gravels with local fine-grained and cemented strata</td>
</tr>
</tbody>
</table>

Avoided CO₂ emissions / CO₂ reduction: 2k t/y
Coefficient of performance (W10/W35): 4.6

Rough description of aquifer: Alluvial sands & gravels
Thickness of aquifer: 40 m
Water level in borehole: 17 m
Groundwater temp.: 15.5°C
Hydraulic conductivity: 10² m/s
Altitude: 120 m
Average annual outside temperature: 13.1°C
Average heating degree days: 3900 K·day ± 200 Kday (base temperature 20°C)
Time of geothermal heat exchanger implementation: 2010

<table>
<thead>
<tr>
<th>System usage</th>
<th>Heating, seasonal use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional non-NSGE installations</td>
<td>GWHP integrated in a cogeneration power station for district heating</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy output</th>
<th>Peak load: 15 MW (heating)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume or area to be conditioned</td>
<td>4mln m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Economic & ecologic key facts</th>
<th>Amortization: 7-8 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avoided CO₂ emissions / CO₂ reduction: 20k t/y (whole cogeneration power plant)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System performance</th>
<th>Flow rate per well: 1000 m³/h (divided into 6 pumping wells)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient of performance (W10/W35): 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geological & hydrological specifics</th>
<th>Geological region: Po Plain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rough description of bedrock: Quaternary and actual sands & gravels with local fine-grained and cemented strata</td>
</tr>
<tr>
<td></td>
<td>Rough description of aquifer: Alluvial sands & gravels</td>
</tr>
<tr>
<td></td>
<td>Thickness of aquifer: 40-45 m</td>
</tr>
<tr>
<td></td>
<td>Groundwater temp.: 15°C</td>
</tr>
<tr>
<td></td>
<td>Hydraulic conductivity: 10⁻³ m/s</td>
</tr>
</tbody>
</table>

This project is co-financed by the European Union through the Interreg Alpine Space programme.

Project duration: 16/12/2015 - 15/12/2018
Funding:
Total eligible costs: 2,962,952.30 €
ERDF grant: 2,308,232.96 €

District heating Canavese
Milano, Lombardia (Italy)
Groundwater use for heating
Terme Acqui
Piemonte (Italy)
Borehole heat exchangers for heating and domestic hot water

<table>
<thead>
<tr>
<th>System usage</th>
<th>Heating and domestic hot water, permanent use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy output</td>
<td>Practically demanded peak load: Heating: 145 kW</td>
</tr>
<tr>
<td>Economic & ecologic key facts</td>
<td>Installation costs: 230k€+VAT</td>
</tr>
<tr>
<td>Geothermal heat exchanger</td>
<td>Count and length of BHEs: 20 x 100 m BHE, in total 2000 m</td>
</tr>
<tr>
<td>System performance</td>
<td>Heat pump (HP) rated power (W10/W35): 145 kW</td>
</tr>
</tbody>
</table>
| Materials used | Heat pump working fluids (refrigerant): R134a
Heat transfer media/heat carrier fluid: Propylene glycol 25% vol. |
| Geological & hydrological specifics | Geological region: Langhe Hills (Tertiary Piedmont Basin)
Rough description of bedrock: marls
Thermal conductivity of the soils and rocks: 2.1 W/(mK) |

Altitude: 156 m
Average annual outside temperature: 13,3 °C
Average heating degree days: 3900 K-day ± 200 Kday (base temperature 20 C)
Time of geothermal heat exchanger implementation: 2013
Data center of the provider “Aruba”
Lombardia (Italy)

Groundwater use for free cooling

| Altitude: **224 m**
| Average annual outside temperature: **12,5 °C**
| Average heating degree days: **2500 Kday** (base temperature 20 °C)
| Time of geothermal heat exchanger implementation: **2017**

The largest data centre of Italy is cooled with groundwater through a free cooling system, reducing cooling costs of about 80% compared to conventional air-water chiller.

The Global Cloud Data Center is a data center campus with a surface area of 200,000m² in Ponte San Pietro (BG), just a few minutes from Milan. All the systems have been designed and built to meet and exceed the highest levels of resilience set by ANSI/TIA 942-A Rating 4 (formerly Tier 4). A surface area of 90,000m² dedicated to the data center in a total area of 200,000m². Maximum logical and physical security, with armed guards 24/7 and 7 different security perimeters. Up to 90MW of power, with self-produced hydroelectric and photovoltaic energy. Double multi-modular power center with UPS boasting 2N + 1 redundancy. Made-to-measure power of up to 40kW per rack. Redundant emergency generators with 48-hour full-load autonomy without refuelling. Further information at: https://www.datacenter.it/en/aruba-data-center/italy-milan-dc-it3.aspx; https://www.datacenter.it/en/aruba-ecosustainability/green-energy.aspx.

| System usage | Groundwater free cooling, permanent use
| Additional non-NSGE installations: a hydropower plant (1150 kW) and a photovoltaic system (450 kW). Air-water chillers are installed for emergency only (i.e. in case of failure of the free-cooling system) Possible integration with other energy sources: the data centre is 100% fed with renewable electrical energy
| Energy output | Annual energy output Cooling: **35 GWh/a** Practically demanded peak load: Cooling: **4 MW** Volume or area to be acclimatised: **7,000 m²**
| Economic & ecologic key facts | Amortization: not relevant; backup air-water chillers installed
| Energy efficiency rating of the building: **5000 kWh/(m²*a)**
| Reduction of energy costs (incl. cooling, DHW etc.): reduction of cooling costs of of about 80% compared to conventional air-water chiller.
| Avoided CO₂ emissions / CO₂ reduction: 80% compared to air-water chiller
| Increase of RES share: 100 %
| Reduction of primary energy consumption: 80 % compared to air-water chiller
| Geothermal heat exchanger | Length/Depth of wells: 4 water wells, 16 m deep each, total flow rate of 80 l/s
| System performance | Heat pump (HP) rated power (W10/W35): no heat pump, it is a free cooling system with a power of 4 MW
| Annual HP working hours: **8760 h**
| Annual electricity consumption of the HP: no heat pump; the energy consumption of the wells is not known
| Flow rate per well: **144 m³/h**
| Geological & hydrological specifics | Geological region: Po plain
| Rough description of bedrock/aquifer: alluvial sand and gravel deposits
| Rough description of aquifer: alluvial shallow aquifer
| Groundwater temp.: **14 °C**

| This project is co-financed by the European Union through the Interreg Alpine Space programme |
| Project duration: **16/12/2015 - 15/12/2018** |
| Funding: Total eligible costs: **2,962,952,30 €** ERDF grant: **2,308,232,96 €** |
| 35 |
Altitude: 950 m
Avg. annual outside temperature: 6.1 °C
Avg. annual heating degree days: 4700 K·day with a base temp. (indoor temp.) of 20 °C
Time of implementation: 2016

Innovative concept: GWHP system is used for heating and cooling the central building and the underground garage. The central building is heated in winter, and in summer the underground garage is cooled with reversible HPs to preserve snow conditions inside.

For heating and cooling the central building and the underground garage the shallow geothermal energy with GWHPs is used. The central building is heated in winter, and in summer the garage is cooled with reversible HPs. Water is drawn from 2 wells at a depth of 60 m. 30 l/s of water is allowed to be pumped. The groundwater temperature is only 7 °C, but it is enough to heat the building. Water that flows through water HPs loses ca 3-4 K and is cooled down to 3 or 4 °C. In winter this cooled water is used for more efficient production of artificial or so called man-made snow with snow making machines. The temperature in the main building and in the garage in winter is 20 - 22°C. During the competitions in ski jumping and cross country skiing the garage area is used as a dining room for VIP guests, PRESS centre for journalists and wardrobe for the athletes. In March the snow from the jumping hill is put into garage. In summer the air temp. in the garage is -1 to -2°C and the glycol in pipes in concrete is cooled down to -12°C. So snow is preserved all summer and autumn long and used for the underground track. For heating the central building 2 HP units are used with heating power 78,4 kW each, and for cooling the garage 3 HPs with cooling power 31,5 kW each (for cooling the cross country track) and heating power 51,3 kW each (use during competitions for PRESS, VIP and athletes). The second building, mainly used for athletes and employees, is heated by 2 HPs with heating power 58,9 kW each. Because of rather cold underground water, COP of the whole system is ca 3.

Key words: sport facility, ski trails, GWHP system, water wells, Southern Alps, Tamar valley, Quaternary terrestrial deposits (sand, gravel).
Planica Nordic Center

Kranyska Gora (Slovenia)

Groundwater heat pump

System usage

- **Heating and cooling**
- **Additional non-NSGE installations:** Two air-sourced heat pumps for another two buildings

Energy output

<table>
<thead>
<tr>
<th></th>
<th>Annual energy output</th>
<th>Peak load</th>
<th>Volume or area to be acclimatised:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating</td>
<td>488 MWh</td>
<td>405 kW</td>
<td>8500 m³ (buildings) and 10300 m² (garage)</td>
</tr>
<tr>
<td>Cooling</td>
<td>295 MWh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project duration: 16/12/2015 - 15/12/2018

Economic & ecologic key facts

- **Installation costs:** €40,000,000

Geothermal heat exchanger details

<table>
<thead>
<tr>
<th></th>
<th>Flow- and return flow temp.: 7/3.5 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow rate per well:</td>
<td>17 m³/h</td>
</tr>
<tr>
<td>Avg. coefficient of performance:</td>
<td>3.0</td>
</tr>
<tr>
<td>Seasonal performance factor SPF:</td>
<td>4.37 for heating, 5.41 for cooling</td>
</tr>
</tbody>
</table>

System performance

- **Heat pump (HP) rated power (W10/W35):**
 - Heating power: 2 x 78.4 + 3 x 51.3 + 2 x 58.9 = 428.5 kW
 - Cooling power: 3 x 31.5 = 94.5 kW
- **Annual HP working hours:** 5478 [h], of these 70% in cooling mode
- **Annual electricity consumption of the HP:**
 - Heating: 49600 + 34585 = 94185 kWh/a
 - Cooling: 80727 kWh/a

Geological & hydrological specifics

- **Geological region:** Southern Alps, Julian Alps
- **Rough description of bedrock:**
 - Karstified dolomites and limestones, coarse grained Quaternary sediments
- **Thermal conductivity of the soils and rocks:**
 - [from 1.0 to 4.0 W/mK]
- **Groundwater temp.:**
 - Avg/Min/Max: 7.0/5.8/9.0
- **Ground temp.:**
 - App. 6.0
- **Rough description of aquifer:**
 - Till morena
- **Thickness of aquifer:**
 - Several 10s of m or even > 100 m
- **Water level in borehole:** 46 [m]
- **Groundwater temp.:** 7 °C
- **Hydraulic conductivity:**
 - In order of 10-2 [m/s]
System usage

Heating & domestic hot water, permanent use

Additional non-NSGE installations: gas boiler, solar collectors

Energy output

Annual energy output

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating</td>
<td>363,440 kWh</td>
</tr>
<tr>
<td>DHW</td>
<td>ca 30,000 kWh</td>
</tr>
</tbody>
</table>

Practically demanded peak load

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating</td>
<td>40 kW</td>
</tr>
</tbody>
</table>

Economic & ecologic key facts

Installation costs: 102,119.55 €

Running costs/year: 18,000 €

Reduction of heating energy costs: 40% lower use of gas

Reduction of energy costs (incl. cooling, DHW etc.): 70%

Geothermal heat exchanger details

Length of installed pipes: 6000 m

Area of collector: 5500m²

Flow- and return flow temp.: 2/6 °C

System performance

Heat pump (HP) rated power (B0/W35): 140 kW

Annual HP working hours: 2596 h -- full load hours

Annual electricity consumption of the HP: 90,860 kWh/a

Flow rate primary circuit at HP: 25 m³/h

Coefficient of performance (B0/W35): 4.78

Seasonal performance factor SPF a'+a'': 4.0

Materials used

Completion/backfilling material around collector pipes: layer of sand and then soil

Heat transfer media/heat carrier fluid: 70 % water, 30 % glycol

Heat pump working fluids (refrigerant): R407

Geological & hydrological specifics

Geological region: Southern Alps, Ljubljana basin

Rough description of bedrock: layers of Oligocene marine clay

Thermal conductivity of the soil: clay: 1,43 W/(m-K); dolomite: 4.2 W/(m-K)

Average ground temperature: 9 °C
Altitude: **1083 m**
Average annual outside temperature: **7.8 °C**
Average heating degree days: **4100 Kday**
(base temperature 20 °C)
Time of geothermal heat exchanger implementation: **2007**

It is a GWHP installation with a doublet of 2 wells (24 m deep, reinjection one much shallower, and 15 m apart). The system is permanently used for DHW for the apartments and the main camp building. During the opening time from October to May the heating of apartments is carried out with stove on wood (30 kW of power). The restaurant is heated with a fireplace on wood. Space heating is with boiler on heating oil (100 kW power). The HP heats the DHW up to 55°C, and it is further heated to 75-80°C with oil boilers due to legionella problems. The equivalent full load hours of the HP operation is 700 h/yr only. The amount of energy supplied per HP technology (30 kW rated power) is ca 0.01423 GWh/yr.

<table>
<thead>
<tr>
<th>System usage</th>
<th>Domestic hot water production, permanent use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy output</td>
<td>Annual energy output</td>
</tr>
<tr>
<td></td>
<td>Heating: 3 x 800 l tank storage on oil boiler, 500 l for water from HP</td>
</tr>
<tr>
<td></td>
<td>Volume or area to be acclimatised: 1250 m² or 500 m²</td>
</tr>
<tr>
<td>Economic & ecologic key facts</td>
<td>Running costs/year: 3000 €/a</td>
</tr>
<tr>
<td></td>
<td>Reduction of heating energy costs: before they used 5500 l of oil /a</td>
</tr>
<tr>
<td></td>
<td>Reduction of energy costs: 60-70 %</td>
</tr>
<tr>
<td>Geothermal heat exchanger details</td>
<td>Count / depth of wells: 2 wells</td>
</tr>
<tr>
<td></td>
<td>Production well(s): 24 m</td>
</tr>
<tr>
<td></td>
<td>Infiltration well(s): much shallower</td>
</tr>
<tr>
<td></td>
<td>Distance between wells: 15 m</td>
</tr>
<tr>
<td>System performance</td>
<td>Flow- and return flow temp.: 8/5 °C</td>
</tr>
<tr>
<td></td>
<td>Heat pump (HP) rated power (W10/W35): 30 kW</td>
</tr>
<tr>
<td></td>
<td>Annual HP working hours: 700 h full load hours of operation</td>
</tr>
<tr>
<td></td>
<td>Annual electricity consumption of the HP: 20,000 – 25,000 kWh/a</td>
</tr>
<tr>
<td>Materials used</td>
<td>Heat transfer media/heat carrier fluid: water</td>
</tr>
<tr>
<td>Geological & hydrological specifics</td>
<td>Geological region: Southern Alps</td>
</tr>
<tr>
<td></td>
<td>Thermal conductivity of the soils and rocks: 2,1 – 4,6 W/(m·K)</td>
</tr>
<tr>
<td></td>
<td>Avg. ground temp.: 7,5 °C</td>
</tr>
<tr>
<td></td>
<td>Thickness of aquifer: 20 m</td>
</tr>
<tr>
<td></td>
<td>Water level in borehole: 7 m</td>
</tr>
<tr>
<td></td>
<td>Average Groundwater temperature: 8,5°C</td>
</tr>
</tbody>
</table>
Altitude: 259 m
Avg. annual outside temperature: 10 °C
Avg. annual heating degree days: 3300 Kday with a base temp. (indoor temp.) of 20°C
Time of implementation: 2015

Multifunctional hybrid heat pump REWATEMP installed for heating and cooling, in combination with passive cooling

A multifunctional hybrid heat pump REWATEMP is installed for heating and cooling. A groundwater is exploited through one well (10 m deep), with reinjection well too. The permanent yield is 3.2 l/s (11.5 m³/h). The pumped water temperature is 11.8 to 13 °C. - The hybrid HP is selected and dimensioned to cover all the energy needs of the heating and cooling in one appliance. The maximum required heating power for the object is 134 kW (winter) and the maximum cooling power is 95 kW. The rated heating power of the appliance is 130 kW and the rated cooling power is 120 kW. The SPF of water capture at the object level is 3.6 in heating mode and 9.1 in cooling mode with combination of passive cooling. Passive cooling means free cooling with the well water when only the electricity of the circulation pumps is consumed. - The monitoring shows that in 2016 the total amount of energy from this renewable energy source amounted to 122 MWh/year and resulted in savings of 13,500 litres of heating oil annually and a reduction of 33 tonnes of CO2 emissions.

Key words: public low-energy building, GWHP system, water well, Pannonian basin, Dravinja valley, Neogene coarse and fine-grained deposits (gravel, silt, sand, clay).

System usage
- heating and cooling of the building
- Domestic hot water production, permanent use

Energy output
- Annual energy output
 Heating: 122000 kWh
 Cooling: 11540 kWh, partly passive cooling

System performance
- Heat pump (HP) rated power (capacity of HP): 130 kW in H mode, 120 kW in C mode
 Annual HP working hours: 1300 h in H mode, 108 h in C mode
 Flow rate per well/borehole: 11.5 [m³/h]
 Seasonal performance factor of heat pump (HSPF): 3.6, and in cooling mode: 9.1

Materials used
- Heat transfer media/heat carrier fluid: water

Geological & hydrological specifics
- Geological region: Pannonian basin
- Thermal conductivity of the soils and rocks: 1.0 – 2.3 W/(m·K)
- Avg/Min/Max. groundwater temp.: 12.4/11.8/13 °C
- Thickness of aquifer: 20 m
- Water level in borehole: 7 m
- Average Groundwater temperature: 8.5°C

Aquifer specifics: The gravel aquifer with intergranular porosity and medium hydraulic conductivity. In the entire field, the direction of flowing groundwater is estimated from west to east. The estimated surface area of the water body is 310,000 m² and its volume is around 1.24 million m³. The stationary water level: at 2.6 m depth (without pumping), and the dynamic water level: stabilized at 4.6 m depth (with pumping of 3.2 l/s).
Altitude: 274 m
Avg. annual outside temperature: 10 °C
Avg. annual heating degree days: 3300 Kday with a base temp. (indoor temp). of 20 °C
Time of implementation: 2006

The combination of geothermal heat pump with variable power and solar power plant that covers all energy needs so that the object has been practically independent for more than 5 years.

System with 2 heat pump units installed for heating and cooling. A groundwater is exploited through one well (ca 20 m deep), with reinjection well. The yield is 1.33 l/s (4.8 m³/h). The pumped water temperature is 12-16 °C (aver. 14°C). – One HP unit is for Heating and Cooling with 25 kW rated power, the other is only for Cooling with 19 kW rated power. It is dimensioned appliance with variable power in combination with solar power plant to cover all the energy needs of the heating and cooling. The SPF in heating mode is 4.3, and in cooling mode ca 4.6 on water capture. The object has been practically independent for more than 5 years.

Key words: business-production building, GWHP system, water well, Pannonian basin, Savinja valley, Neogene coarse and fine-grained deposits (gravel, silt, sand, clay).

System usage
- heating and cooling of the building
- Additional non-NSGE installations: Air-sourced HP for domestic hot water

System performance
- Heat pump (HP) rated power (capacity of HP): 25 + 19 kW
- Annual HP working hours: 2340 + 2170 [h]
- Flow rate per well/borehole: 4,8 [m³/h]
- Avg. coefficient of performance (COP): 4.1
- Seasonal performance factor of heat pump (HSPF): 4,3

Materials used
- Heat pump working fluids (refrigerant): R410a, R407c

Geological & hydrological specifics
- Geological region: Pannonian basin
- Rough description of bedrock: compact clay layers of Oligocene age beneath Q aquifer; J-T carbonatic rocks beneath the Oligocene layers (at ca 600-700 m depth)
- Thermal conductivity of the soils and rocks: 1 to 3 W/mK
- Groundwater temp.: Avg/Min/Max 14/12/16 °C
- Aquifer specifics: Quaternary coarse and fine-grained deposits (gravel, silt, sand). Thickness of aquifer: 32 [m]; of this: the upper aquifer: 10 m Water level in borehole: 4 [m]
It is a GWHP installation with a doublet of 2 wells (22 m and 18 m deep, ca 40 m apart). The system is used for DHW and space heating of the rooms and offices below the ski jump landing all year around. There is underfloor heating for the entire building with HP energy use of groundwater and in winter, there is supplying of used chilled water into reservoirs, from which this water is taken away for snowmaking. Taking into account the knowledge of the HP and its energy performance the special pipeline was constructed ‘for chilled groundwater’ from the heat pump to the water tanks during the operation of the snow cannons. For a time, when snowmaking does not take place, the reinjection well is in function. The basic idea of this system is that the temperature of groundwater (avg. is 9 °C), after the withdrawal of temperature in the HP, is reduced by 4 °C, and with such a temperature the water tank is filled. With the favourable external temperature, water before snowmaking is further cooled to 2 °C. Due to the underfloor heating system, which requires a maximum temperature of 30 °C, the saving of energy for heating is done, so that chilled water from the heat pump reduces the need for electricity for the needs of water for artificial snow. The equivalent full load hours of the HP operation is ca 1800 h/yr. The amount of energy supplied per HP technology (50 kW rated power) is ca 0.064286 GWh/yr.

<table>
<thead>
<tr>
<th>System usage</th>
<th>Heating, permanent use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy output</td>
<td>Annual energy output DHW: 500 l storage tank</td>
</tr>
<tr>
<td>Economic & ecologic key facts</td>
<td>Avoided CO₂ emissions / CO₂ reduction: 100 %</td>
</tr>
<tr>
<td>Geothermal heat exchanger details</td>
<td>Distance between wells: 40 m</td>
</tr>
<tr>
<td></td>
<td>Flow temperature after HP: 4 °C</td>
</tr>
<tr>
<td>System performance</td>
<td>Heat pump (HP) rated power (W10/W35): 50 kW</td>
</tr>
<tr>
<td></td>
<td>Annual HP working hours: 1800 h (full load hours)</td>
</tr>
<tr>
<td></td>
<td>Annual electricity consumption of the HP: 30.000 kWh/a</td>
</tr>
<tr>
<td>Materials used</td>
<td>Heat pump working fluids (refrigerant): water</td>
</tr>
<tr>
<td>Geological & hydrological specifics</td>
<td>Geological region: Southern Alps</td>
</tr>
<tr>
<td></td>
<td>Rough description of bedrock/aquifer: black clayey schists, greywackes, tuffites, limestone (Ladinian, Carnian) or bedded cherty limestones (Ladinian, Carnian, Norianj?) / Quaternary alluvial gravel aquifer</td>
</tr>
<tr>
<td></td>
<td>Thermal conductivity of the soils and rocks: 1.8 – 3.0 W/(m·K)</td>
</tr>
<tr>
<td></td>
<td>Average ground temp.: 9 °C</td>
</tr>
</tbody>
</table>
Zero Emission Project of 50 holiday flats including an indoor swimming pool.

Hybrid solar collectors (PTV) in combination with a BHE field acting as thermal storage (BTES) and additionally a heat recovery from the facility waste water are installed.

System usage

Heating & domestic hot water, permanent use

Additional non-NSGE installations: Hybrid solar collectors (PTV), heat recovery from waste water

Energy output

- **Annual energy output**
 - Heating: 250'000 kWh
 - DHW: 250'000 kWh
 - Electricity: 200'000 kWh Swimming pool: 100'000 kWh
 - Deficiency: 80'000 kWh
 - Storage: -300'000 kWh
 - heat restoration WW: -200'000 kWh
 - Water electricity: external -230'000 kWh
 - Photovoltaic: -150'000 kWh

Practically demanded peak load:

- **Heating:** 380 kW

Ecologic key facts

- **Avoided CO₂ emissions** / **CO₂ reduction:** 100 %

Geothermal heat exchanger details

- **Count and length of BHEs:**
 - 31 BHE’s with a length of 150 m double U pipe, overall length of installed pipes: 18.600 m

Altitude: 1327 m

Average annual outside temperature: 11 °C

Average heating degree days: 4.175 Kday

Time of geothermal heat exchanger implementation: 2014
Supply of district heat by BHE field acting as thermal storage (BTES) in combination with photovoltaic driven air heat pump as a central unit. Decentral units (heat pumps) could be linked to the central supply system.

<table>
<thead>
<tr>
<th>System usage</th>
<th>Heating only, permanent use and seasonal peaks</th>
<th>Additional installations: air heat pump, photovoltaic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy output</td>
<td>Annual energy output</td>
<td>Practically demanded peak load: Heating: 2.100.000 kWh</td>
</tr>
<tr>
<td></td>
<td>Heating: 2.100.000 kWh</td>
<td>Volume or area to be acclimatised: 1.000 m²</td>
</tr>
<tr>
<td>Economic & ecologic key facts</td>
<td>Installation costs: 4.000.000 CHF</td>
<td></td>
</tr>
<tr>
<td>Geothermal heat exchanger details</td>
<td>Count and length of BHEs:</td>
<td>Spacing of boreholes (BHEs): 6 m</td>
</tr>
<tr>
<td></td>
<td>90 BHE’s with a length of 150 m, double U pipe, overall length of installed pipes: 54,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Area of activation for storage: 4,000 m²</td>
<td>Volume of activation for storage: 600,000 m³</td>
</tr>
<tr>
<td></td>
<td>Flow- and return flow temp. difference: ca 4.0 K</td>
<td></td>
</tr>
<tr>
<td>System performance</td>
<td>Heat pump (HP) rated power (B0/W35): 560 kW</td>
<td>Flow rate primary circuit at HP: 1.2 m³/h</td>
</tr>
<tr>
<td></td>
<td>Annual electricity consumption of the HP: 1,500,000 kWh/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual HP working hours: 2.400 h</td>
<td></td>
</tr>
<tr>
<td>Materials used</td>
<td>Heat transfer media/heat carrier fluid:</td>
<td>Heat pump working fluids (refrigerant):</td>
</tr>
<tr>
<td></td>
<td>water-glycol mixture 35%</td>
<td>ammonia heat-pump</td>
</tr>
<tr>
<td>Geological & hydrological specifics</td>
<td>Geological region: Monte Rosa, Bernhard nappe complex</td>
<td>primary: water-glycol mixture</td>
</tr>
<tr>
<td></td>
<td>Thermal conductivity of the soil: 3.3 W/mK</td>
<td>secondary: water</td>
</tr>
<tr>
<td></td>
<td>Specific abstraction capacity: 35 W/m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average ground temperature: 10 °C</td>
<td></td>
</tr>
</tbody>
</table>
Altitude: **1850 m**
Avg. annual outside temperature: **8 °C**
Avg. heating degree-days (VDI 2067): **4770 K-day**
Time of geothermal heat exchanger implementation: **1999**

Heat extraction from the tunnel air placed 1500 m inside above the traffic lines. Heat collector inside the tunnel is used to heat new administrative building on the north portal.

<table>
<thead>
<tr>
<th>System usage</th>
<th>Heating only, permanent use and seasonal peaks</th>
</tr>
</thead>
</table>
| Energy output | Annual energy output
Heating: **139,002 kWh** |
| Economic & ecologic key facts | Installation costs: **163,015 CHF**
Volume or area to be acclimatised: **748 m²**
Avoided CO₂ emissions / CO₂ reduction: **370 t/a** |
| Geothermal heat exchanger details | Flow- and return flow temp. difference: **ca 1.3 K** |
| System performance | Heat pump (HP) rated power (B0/W35): **36 kW**
Annual HP working hours: **4,440 h**
Annual electricity consumption of the HP: **38,298 kWh/a**
Coefficient of performance (B0/W35): **3.72** |
| Materials used | Heat transfer media/heat carrier fluid: **glycol water/air**
Heat pump working fluids (refrigerant): **glycol water** |