

Eco-AlpsWater

Innovative Ecological Assessment and Water Management Strategy
for the Protection of Ecosystem Services in Alpine Lakes and Rivers

Priority 3: Liveable Alpine Space. SO3.2 - Enhance the protection, the

conservation and the ecological connectivity of Alpine Space

Project Eco-AlpsWater
Work Package WPT1
Activity A.T1.1
Deliverable D.T1.1.3. – 1
Version 1.0
Date December 2018
Coordination: I Domaizon

Deliverable D.T1.1.3

Diatom DNA metabarcoding bioinformatics pipeline “Mothur”

software, Miseq, rbcL 312 bp
Interreg Alpine Space - Eco-AlpsWater project – WP1

Author : Valentin Vasselon12.
1 AFB, Aix en Provence, France
2 INRA, CARRTEL, Thonon les bains, France

ABSTRACT
This protocol describes in details the main steps of the bioinformatics process applied to treat high
throughput sequencing (HTS) data, in particular for Diatoms metabarcoding.
This protocol is one of those proposed by the EcoAlpsWater consortium to promote the
implementation of HTS of environmental DNA in the biomonitoring and ecological assessment of water
bodies (lakes and rivers).

Diatom DNA metabarcoding bioinformatics pipeline
“Mothur” software, Miseq, rbcL 312 bp

The following bioinformatical pipeline uses the “Mothur” software (Schloss et al., 2009) to process

DNA reads produced by High-Throughput Sequencing technologies (Illumina MiSeq), from raw data

to final OTU/Taxonomic inventories. A standard pipeline for 16S rRNA metabarcoding data is proposed

online (Kozich et al., 2013, MiSeq SOP, https://www.mothur.org/wiki/MiSeq_SOP) and is regularly

updated. Here we present an alternative pipeline adapted to diatom DNA metabarcoding and already

applied in different studies targeting benthic diatom communities from lakes (e.g. Rimet et al., 2018;

Rivera et al., 2018) and rivers (Vasselon et al., 2017a b; Keck et al., 2018a). Description of the different

commands and the parameters used are also found in the Mothur wiki (https://www.mothur.org/wiki/).

1 Demultiplexing and Contig steps

After MiSeq paired-end sequencing, 2 fastq files are provided with R1.fastq including forward DNA

reads and with R2.fastq corresponding to the reverse DNA reads. First bioinformatical steps consist i)

to contig the forward and reverse DNA read in order to only keep one consensus sequence with a good

overlapping score, ii) to demultiplex DNA reads in order to sort DNA reads according to their sample

origin using dual indices included during HTS library preparation. Those steps can be performed using

Mothur using the following commands with an oligos file including the rbcL primer sequences and the

sample dual indices (https://www.mothur.org/wiki/Oligos_File):

make.file(inputdir=D:\Example, type=fastq, prefix=stability)

make.contigs(file=stability.files, checkorient=t)

screen.seqs(fasta=stability.trim.contigs.fasta, qfile=stability.trim.contigs.qual,
contigsreport=stability.contigs.report, maxambig=0, minoverlap=140)

As the quality of the sequencing may vary according to the chemistry, sequencing machine, sequencing

platform or the samples used, we preferred to let the sequencing platform perform those steps. They can

easily adjust filtering parameters of the contig step (e.g. minimum length for the overlapping region, %

of mismatches between forward and reverse reads…) according to the quality of HTS data they obtained.

2 Quality trimming of DNA reads

At this point, the sequencing platform provided one fastq file per sample which correspond to DNA

reads already contiged and demultiplexed. The following commands will be applied for each sample to

perform the trimming steps:

#Extract the fasta and the qual (PHRED quality score) files from the fastq file
fastq.info(fastq=1.fastq)

#Trim DNA reads according to different criteria (read quality, length, “N”, homopolymers, forward primer)

trim.seqs(fasta=1.fasta, qfile=1.qual, qwindowaverage=23, qwindowsize=25, minlength=280, maxlength=340,

maxambig=0, maxhomop=8, keepforward=t, checkorient=t, oligos=forward_new.oligos, pdiffs=1, processors=1)

#Successfully trimmed DNA reads are then trimmed focusing the reverse primer

https://www.mothur.org/wiki/MiSeq_SOP
https://www.mothur.org/wiki/Oligos_File

trim.seqs(fasta=1.trim.fasta, qfile=1.trim.qual, qwindowaverage=23, qwindowsize=25, minlength=280,

maxlength=340, maxambig=0, maxhomop=8, keepforward=t, checkorient=t, oligos=reverse_new.oligos,

pdiffs=1, processors=1)

#Successfully trimmed DNA reads are lists and extracted from the original fasta file (1.fasta) to keep integrity

of DNA reads name (trim.seqs command add information in DNA reads name)

list.seqs(fasta=1.trim.trim.fasta)

get.seqs(accnos=1.trim.trim.accnos, fasta=1.fasta, qfile=1.qual)

rename.file(input=1.pick.fasta, new=barcode1.fasta)

Those steps are applied to each fastq file i) individually by repeating this script for each sample and

changing the files names, ii) or parallelized automatically using appropriate code on Linux for example.

Here is an example to perform individual trimming on 4 samples:

####Trimming sample 1

fastq.info(fastq=1.fastq)

trim.seqs(fasta=1.fasta, qfile=1.qual, qwindowaverage=23, qwindowsize=25, minlength=280, maxlength=340,
maxambig=0, maxhomop=8, keepforward=t, checkorient=t, oligos=forward_new.oligos, pdiffs=1, processors=1)

trim.seqs(fasta=1.trim.fasta, qfile=1.trim.qual, qwindowaverage=23, qwindowsize=25, minlength=280,
maxlength=340, maxambig=0, maxhomop=8, keepforward=t, checkorient=t, oligos=reverse_new.oligos,
pdiffs=1, processors=1)

list.seqs(fasta=1.trim.trim.fasta)

get.seqs(accnos=1.trim.trim.accnos, fasta=1.fasta, qfile=1.qual)

rename.file(input=1.pick.fasta, new=barcode1.fasta)

####Trimming sample 2

fastq.info(fastq=2.fastq)

trim.seqs(fasta=2.fasta, qfile=2.qual, qwindowaverage=23, qwindowsize=25, minlength=280, maxlength=340,
maxambig=0, maxhomop=8, keepforward=t, checkorient=t, oligos=forward_new.oligos, pdiffs=1, processors=1)

trim.seqs(fasta=2.trim.fasta, qfile=2.trim.qual, qwindowaverage=23, qwindowsize=25, minlength=280,
maxlength=340, maxambig=0, maxhomop=8, keepforward=t, checkorient=t, oligos=reverse_new.oligos,
pdiffs=1, processors=1)

list.seqs(fasta=2.trim.trim.fasta)

get.seqs(accnos=2.trim.trim.accnos, fasta=2.fasta, qfile=2.qual)

rename.file(input=2.pick.fasta, new=barcode2.fasta)

####Trimming sample 3

fastq.info(fastq=3.fastq)

trim.seqs(fasta=3.fasta, qfile=3.qual, qwindowaverage=23, qwindowsize=25, minlength=280, maxlength=340,
maxambig=0, maxhomop=8, keepforward=t, checkorient=t, oligos=forward_new.oligos, pdiffs=1, processors=1)

trim.seqs(fasta=3.trim.fasta, qfile=3.trim.qual, qwindowaverage=23, qwindowsize=25, minlength=280,
maxlength=340, maxambig=0, maxhomop=8, keepforward=t, checkorient=t, oligos=reverse_new.oligos,
pdiffs=1, processors=1)

list.seqs(fasta=3.trim.trim.fasta)

get.seqs(accnos=3.trim.trim.accnos, fasta=3.fasta, qfile=3.qual)

rename.file(input=3.pick.fasta, new=barcode3.fasta)

####Trimming sample 4

fastq.info(fastq=4.fastq)

trim.seqs(fasta=4.fasta, qfile=4.qual, qwindowaverage=23, qwindowsize=25, minlength=280, maxlength=340,
maxambig=0, maxhomop=8, keepforward=t, checkorient=t, oligos=forward_new.oligos, pdiffs=1, processors=1)

trim.seqs(fasta=4.trim.fasta, qfile=4.trim.qual, qwindowaverage=23, qwindowsize=25, minlength=280,
maxlength=340, maxambig=0, maxhomop=8, keepforward=t, checkorient=t, oligos=reverse_new.oligos,
pdiffs=1, processors=1)

list.seqs(fasta=4.trim.trim.fasta)

get.seqs(accnos=4.trim.trim.accnos, fasta=4.fasta, qfile=4.qual)

rename.file(input=4.pick.fasta, new=barcode4.fasta)

3 Dereplication into Individual Sequence Unit (ISU)

Prior to the dereplication step and the subsequent bioinformatic steps, all the individual sample fasta

files resulting from the trimming steps are merged together. Commands provided below are based on

the 4 samples example dataset:

#Merge of the 4 samples fasta files which contained trimmed DNA reads

merge.files(input=barcode1.fasta-barcode2.fasta-barcode3.fasta-barcode4.fasta, output=barcodes.fasta)

#Creation of a group file which indicate the sample origin of each DNA read

make.group(fasta=barcode1.fasta-barcode2.fasta-barcode3.fasta-barcode4.fasta, groups=01-02-03-04)

rename.file(input=merge.groups, new=barcodes.groups, deleteold=true)

As the fasta file may contain DNA reads that are identical, we use the dereplication step to conserve

only one DNA read sequence called Individual Sequence Unit (ISU). Mothur will create the names file

in order to indicate how many DNA reads are identical to the ISU.

Dereplication step: creation of a fasta file with ISUs and the names

unique.seqs(fasta=barcodes.fasta)

summary.seqs(fasta=barcodes.unique.fasta, name=barcodes.names)

After dereplication we obtained 76,649 ISUs corresponding to 166,292 DNA reads

As we organized our data into ISUs, which can be considered as OTUs at 100% similarity threshold, we

can remove ISUs represented by only 1 DNA reads (similar to singleton removal). This step is performed

to denoise our data by removing DNA reads which certainly correspond to erroneous sequences and

artefacts produced during PCR amplification and the sequencing. If the aim of the study is to work on

low abundant taxa, this step should be avoided in order to keep singleton. In the case of diatom

metabarcoding and for biomonitoring purposes, previous study set this threshold to 10 reads; because

only abundant taxa have a real impact during calculation of diatom water quality indices (Apothéloz-

Perret-Gentil et al., 2017) we can remove rare signals. In this example, we will remove ISUs represented

by only 1 DNA reads.

#Removal of ISU with represented only 1 read

split.abund(fasta=barcodes.unique.fasta, name=barcodes.names, group=barcodes.groups, cutoff=1, accnos=T)

summary.seqs(fasta=barcodes.unique.abund.fasta, name=barcodes.abund.names)

count.groups(group= barcodes.abund.groups)

After removal of ISUs represented by 1 read, we obtain 15,397 ISUs corresponding to 105,040 DNA reads

4 Alignment of DNA reads

Prior to the alignment step, primers are removed from the DNA reads nucleotide sequence and the

expected length of the rbcL barcode without primers is 263 bp.

#Primers removal

pcr.seqs(fasta=barcodes.unique.abund.fasta, group=barcodes.abund.groups, name=barcodes.abund.names,
oligos=oligos_primer_removal.oligos, keepprimer=f, pdiffs=1, rdiffs=1, keepdots=f)

For downstream bioinformatics steps, Mothur will need an alignment of our DNA reads. As classical

alignment software (Muscle, Clustalw, Maaft) would be time-consuming to align millions of DNA

reads, Mothur propose a different approach : “The general approach is to i) find the closest template for

each candidate using kmer searching; ii) to make a pairwise alignment between the candidate and de-

gapped template sequences using the Needleman-Wunsch algorithms (Needleman & Wunsch, 1970) ;

and iii) to re-insert gaps to the candidate and template pairwise alignments using the NAST algorithm

so that the candidate sequence alignment is compatible with the original template alignment”

(https://www.mothur.org/wiki/Align.seqs). Thus, we use a reference alignment created with the rbcL

diatom database as a template to align the DNA reads.

#Alignment of DNA reads

align.seqs(fasta=barcodes.unique.abund.pcr.fasta, reference=312bp_rbcL_(11_15)_980seq_align.fasta,
processors=1)

The alignment produced is optimized automatically in order to find the best “start” and “end” positions

shared by 90% of the DNA reads. Poorly aligned sequences will be removed.

#Optimization and curation of the alignment

screen.seqs(fasta=barcodes.unique.abund.pcr.align, name=barcodes.abund.pcr.names,
group=barcodes.abund.pcr.groups, optimize=start-end, criteria=90, processors=1)

#Useless “_”and “.” are removed from the alignment

filter.seqs(fasta=barcodes.unique.abund.pcr.good.align, trump=., vertical=T, processors=1)

#As we removed primers, a new dereplication step can be performed to detect new ISUs

unique.seqs(fasta=barcodes.unique.abund.pcr.good.filter.fasta, name=barcodes.abund.pcr.good.names)

5 Detection of chimeras

Prior to the detection of chimeras, Mothur recommend to pre-cluster the DNA reads in order to de-noise

our data. This is performed using a pseudo-single linkage algorithm that will split the sequence sample

by sample and sort them by abundance. The algorithm will then identify DNA reads that are within 1 nt

similarity threshold and merge low abundant DNA read into the most abundant ones

(https://mothur.org/wiki/Pre.cluster). As for singleton removal, this step can be avoided (or diffs set to

0) to enable low abundant taxa detection.

#Denoising using pre-cluster approach

pre.cluster(fasta=barcodes.unique.abund.pcr.good.filter.unique.fasta,
name=barcodes.unique.abund.pcr.good.filter.names, group=barcodes.abund.pcr.good.groups, diffs=1,
processors=1)

#Chimera detection software as implemented in vsearch (Rognes et al., 2016)

chimera.vsearch(fasta=barcodes.unique.abund.pcr.good.filter.unique.precluster.fasta,
name=barcodes.unique.abund.pcr.good.filter.unique.precluster.names,
group=barcodes.abund.pcr.good.groups, dereplicate=T, processors=1)

#Chimera are removed from fasta, names, groups files according to chimera.vsearch results

remove.seqs(accnos=barcodes.unique.abund.pcr.good.filter.unique.precluster.denovo.vsearch.accnos,
fasta=barcodes.unique.abund.pcr.good.filter.unique.precluster.fasta,
name=barcodes.unique.abund.pcr.good.filter.unique.precluster.names,
group=barcodes.abund.pcr.good.groups)

#Change the name of the groups, fasta, names files

rename.file(input=barcodes.abund.pcr.good.pick.groups, new=barcodes.final.groups, deleteold=true)

rename.file(input=barcodes.unique.abund.pcr.good.filter.unique.precluster.pick.fasta,
new=barcodes.final.fasta, deleteold=true)

rename.file(input=barcodes.unique.abund.pcr.good.filter.unique.precluster.pick.names,
new=barcodes.final.names, deleteold=true)

https://www.mothur.org/wiki/Align.seqs

6 Selection of diatom DNA reads (Bacillariophyta)

Mothur implemented the Naïve Bayesian classifier developed by (Wang et al., 2007) that allowed a

rapid assignment of DNA reads. The Diat.barcode reference database (previously named R-

Syst::diatom, Rimet et al., 2016) is used as template for the assignment and is freely available

(https://www6.inra.fr/carrtel-collection_eng/Barcoding-database/Aligned-and-trimed-database).

#DNA reads taxonomic assignment (wang method, bootstrap cutoff=75%)

classify.seqs(fasta=barcodes.final.fasta, group=barcodes.final.groups, name=barcodes.final.names,
template=Rsyst_230218_align_1401seqs_312bp_vf.fasta,
taxonomy=Rsyst_230218_align_1401seqs_312bp_vf.tax, cutoff=75, processors=1)

#Selection of DNA reads belonging to Bacillariophyta

get.lineage(taxonomy=barcodes.final.Rsyst_230218_align_1401seqs_312bp_vf.wang.taxonomy,
taxon='Bacillariophyta;Fragilariophyceae;-Bacillariophyta;Bacillariophyceae;-Bacillariophyta;Mediophyceae;-
Bacillariophyta;Coscinodiscophyceae;', group=barcodes.final.groups, name=barcodes.final.names,
fasta=barcodes.final.fasta)

7 Similarity Distance Matrix

Prior performing OTU clustering, we need to create a similarity distance matrix. To do so, “the dist.seqs

command will calculate uncorrected pairwise distances between aligned DNA sequences”. This

approach presents several advantages: i) distances are not stored in RAM, ii) we can obtain a column-

formatted matrix instead of lower triangle or square matrices to reduce the size of the file generated, iii)

we can set a cutoff to only conserve distances we are interested in. As we will used a distance suimilarity

threshold of 95% to create OTUs, we can set a cutoff of 0.06 (94% similarity) to generate the distance

matrix. However, it considers that caution should be exercised when applying this command, it can

generate large file (>100 Go) if the dataset contains a lot DNA reads or if the cutoff is not adapted.

#Creation of the distance matrix based on DNA reads similarity

dist.seqs(fasta=barcodes.final.pick.fasta, cutoff=0.06, processors=1)

8 OTU Clustering

Several clustering algorithms are proposed by Mothur to cluster DNA reads into OTUs, the default

method proposed corresponding to the Opticlust algorithm which has been identified as the most adapted

(Westcott & Schloss, 2017). Despite good results obtained with this approach for diatom DNA

metabarcoding (Mortagua et al. in review), we will use the furthest neighbor algorithm as reported in

previous studies (e.g. Vasselon et al., 2017b; Rimet et al., 2018; Rivera et al., 2018; Keck et al., 2018b).

Even if this algorithm inflates the number of OTUs created, their consistency is well preserved allowing

a better reliability of the taxonomic assignment. We use a 95% similarity threshold to define OTUSs

with this clustering methods and the diatom rbcL barcode as we considered it as a good compromise

between a correct taxonomic resolution and limitation of DNA metabarcoding biases (see Tapolczai et

al., 2019 for a better insight of “the impact of OTU sequence similarity threshold on diatom‐based

bioassessment”).

#OTU Clustering with the furthest neighbor method. The cutoff set to 0.06 means that the command will
automatically create OTUs lists at 100, 99, 98, 97, 96, 95, 94% similarity thresholds

cluster(column=barcodes.final.pick.dist, name=barcodes.final.pick.names, method=furthest, cutoff=0.06)

If the distance matrix is too large, your computer may not be able to use the cluster command to create

OTUs. In this case, the cluster.split command can be used to proceed as it will split your distance matrix

based on the DNA read taxonomy you obtained at the step 6 prior performing the clustering

(https://www.mothur.org/wiki/Cluster.split).

#Use cluster.split command if cluster command failed with distance matrix

#cluster.split(column=barcodes.final.pick.dist, name=barcodes.final.pick.names,
taxonomy=barcodes.final.Rsyst_230218_align_1401seqs_312bp_vf.wang.pick.taxonomy, splitmethod=classify,
taxlevel=7, method=furthest, cutoff=0.06)

#Reorganize the OTU table and select only the 95% OTU table

make.shared(list=barcodes.final.pick.fn.list, group=barcodes.final.pick.groups, label=0.05)

make.table(shared=barcodes.final.pick.fn.shared)

9 Taxonomic assignment of OTUs

A taxonomy is given to each OTU based on the consensus taxonomy of DNA reads belonging to each

OTU using the DNA read taxonomy obtained at the step 6. A cutoff is provided and correspond to the

minimum confidence threshold expected before validating a taxonomy.

#Taxonomic assignment of OTUs

classify.otu(list=barcodes.final.pick.fn.list, name=barcodes.final.pick.names, group=barcodes.final.pick.groups,
taxonomy=barcodes.final.Rsyst_230218_align_1401seqs_312bp_vf.wang.pick.taxonomy, cutoff=80,
label=0.05)

#Selection of a DNA representative sequence for each OTU

get.oturep(list=barcodes.final.pick.fn.list, name=barcodes.final.pick.names, group=barcodes.final.pick.groups,
label=0.05, method=abundance, fasta=barcodes.final.pick.fasta)

10 Data normalization

Before performing community structure analyses, the data must be normalized. We perform a random
subsampling of DNA reads in order to set all the samples at the same DNA read number corresponding to the
lowest read number found within one sample. For diatom DNA metabarcoding, we expect to have at least 5000
DNA read per sample and if a sample is below this number, he will be removed from the analyses before
performing the subsampling.

#Sub sampling and creation of the normalized OTU table

sub.sample(shared=barcodes.final.pick.fn.shared, name=barcodes.final.pick.names,
group=barcodes.final.pick.groups, fasta=barcodes.final.pick.fasta, label=0.05)

https://www.mothur.org/wiki/Cluster.split

make.table(shared=barcodes.final.pick.fn.0.05.subsample.shared)

#Selection of the subsampled OTUs within the OTU taxonomy file

list.otulabels(shared=barcodes.final.pick.fn.0.05.subsample.shared)

get.otus(accnos=barcodes.final.pick.fn.0.05.subsample.0.05.otulabels,
constaxonomy=barcodes.final.pick.fn.0.05.cons.taxonomy)

--- -----------------------

Reference
Apothéloz-Perret-Gentil L., Cordonier A., Straub F., Iseli J., Esling P. & Pawlowski J. (2017). Taxonomy-

free molecular diatom index for high-throughput eDNA biomonitoring. Molecular Ecology
Resources 17, 1231–1242. https://doi.org/10.1111/1755-0998.12668

Keck F., Vasselon V., Rimet F., Bouchez A. & Kahlert M. (2018a). Boosting DNA metabarcoding for
biomonitoring with phylogenetic estimation of operational taxonomic units’ ecological profiles.
Molecular Ecology Resources 18, 1299–1309. https://doi.org/10.1111/1755-0998.12919

Keck F., Vasselon V., Rimet F., Bouchez A. & Kahlert M. (2018b). Boosting DNA metabarcoding for
biomonitoring with phylogenetic estimation of operational taxonomic units’ ecological profiles.
Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.12919

Kozich J.J., Westcott S.L., Baxter N.T., Highlander S.K. & Schloss P.D. (2013). Development of a dual-
index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the
MiSeq Illumina sequencing platform. Applied and environmental microbiology 79, 5112–20.
https://doi.org/10.1128/AEM.01043-13

Needleman S.B. & Wunsch C.D. (1970). A general method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of Molecular Biology 48, 443–453.
https://doi.org/10.1016/0022-2836(70)90057-4

Rimet F., Chaumeil P., Keck F., Kermarrec L., Vasselon V., Kahlert M., et al. (2016). R-Syst::diatom: an
open-access and curated barcode database for diatoms and freshwater monitoring. Database
2016, baw016. https://doi.org/10.1093/database/baw016

Rimet F., Vasselon V., A.-Keszte B. & Bouchez A. (2018). Do we similarly assess diversity with
microscopy and high-throughput sequencing? Case of microalgae in lakes. Organisms Diversity
and Evolution 18. https://doi.org/10.1007/s13127-018-0359-5

Rivera S.F., Vasselon V., Jacquet S., Bouchez A., Ariztegui D. & Rimet F. (2018). Metabarcoding of lake
benthic diatoms: from structure assemblages to ecological assessment. Hydrobiologia 807, 37–
51. https://doi.org/10.1007/s10750-017-3381-2

Rognes T., Flouri T., Nichols B., Quince C. & Mahé F. (2016). VSEARCH: a versatile open source tool for
metagenomics. PeerJ 4, e2584. https://doi.org/10.7717/peerj.2584

Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., et al. (2009). Introducing
mothur: Open-source, platform-independent, community-supported software for describing
and comparing microbial communities. Applied and Environmental Microbiology 75, 7537–
7541. https://doi.org/10.1128/AEM.01541-09

Tapolczai K., Vasselon V., Bouchez A., Stenger-Kovács C., Padisák J. & Rimet F. (2019). The impact of
OTU sequence similarity threshold on diatom-based bioassessment: A case study of the rivers of
Mayotte (France, Indian Ocean). Ecology and Evolution 9, 166–179.
https://doi.org/10.1002/ece3.4701

Vasselon V., Domaizon I., Rimet F., Kahlert M. & Bouchez A. (2017a). Application of high-throughput
sequencing (HTS) metabarcoding to diatom biomonitoring: Do DNA extraction methods matter?
Freshwater Science 36, 162–177. https://doi.org/10.1086/690649

Vasselon V., Rimet F., Tapolczai K. & Bouchez A. (2017b). Assessing ecological status with diatoms
DNA metabarcoding: Scaling-up on a WFD monitoring network (Mayotte island, France).

Ecological Indicators 82, 1–12. https://doi.org/10.1016/j.ecolind.2017.06.024

Wang Q., Garrity G.M., Tiedje J.M. & Cole J.R. (2007). Naïve Bayesian classifier for rapid assignment
of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology
73, 5261–5267. https://doi.org/10.1128/AEM.00062-07

Westcott S.L. & Schloss P.D. (2017). OptiClust, an Improved Method for Assigning Amplicon-Based
Sequence Data to Operational Taxonomic Units. mSphere 2, e00073-17.
https://doi.org/10.1128/mSphereDirect.00073-17

