

International Mountain Conference

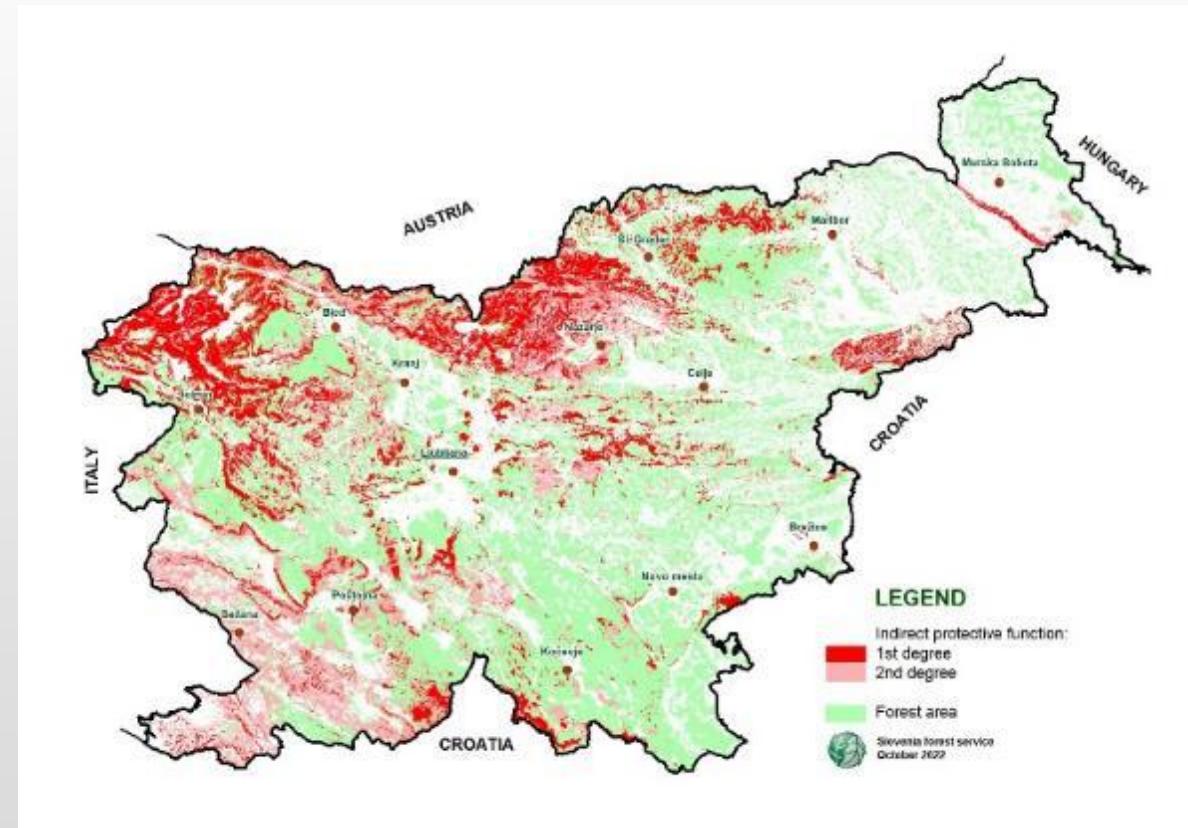
Zavod za gozdove Slovenije
Slovenia Forest Service

Capacity building to support forest management in protective forests of Slovenia

Sever Kristina, dr. Kobal Milan, mag. Guček Matjaž, mag. Breznikar Andrej, Cholkova Magdalena, dr. Poljanec Aleš
Contact: kristina.sever@zgs.si

THE PROTECTIVE FUNCTION IS KEY ECOSYSTEM SERVICE IN MOUNTAIN FORESTS

IN SLOVENIA: 21% OF FOREST WITH AN EMPHASIZED PROTECTIVE FUNCTION


NATURE-BASED SOLUTION AGAINST SLOPE-RELATED and EXTREME WEATHER EVENTS

EXTREME WEATHER COMPOUND EVENTS REDUCED STAND STABILITY AND PROVISION OF ESS

SOCIAL CHANGES: INCREASED DEMANDS ON FORESTS

ADDRESSING CLIMATE AND SOCIAL CHANGES REQUIRES ACTIVE MANAGEMENT

CAPACITY BUILDING IS ESSENTIAL TO ENHANCE FOREST MANAGEMENT IN PROTECTIVE FORESTS

NEW APPROACHES TO STRENGTHEN THE PROTECTIVE FUNCTION

CAPACITY BUILDING:

EDUCATION AND TRAINING

COLLABORATION AND NETWORKING

PROVIDING TOOLS AND METHODS

INSTITUTIONAL SUPPORT

LIVING LAB AS A CAPACITY BUILDING TOOL

USER-CENTERED

REAL-LIFE ENVIRONMENT

ITERATIVE FEEDBACK PROCESSES

STAKEHOLDER COLLABORATION

FULL INNOVATION LIFECYCLE

EXPERIMENTAL LEARNING

Interreg Co-funded by
the European Union

Alpine Space

MOSAIC

OPENNESS AND FLEXIBILITY

SUSTAINABLE IMPACT

FOREST LIVING LAB SOTESKA

MUNICIPALITY OF
BOHINJ – Soteska gorge

PROTECTIVE FOREST on
steep slopes, protecting
road, railway, bicycle path

MAIN RISKS:

Rockfall
Land slides
Torrential waters
Wind
Barkbeetle

FOREST LIVING LAB SOTESKA

ACTIVITIES:

Research, case studies

Workshops, excursions, trainings

TARGET GROUPS AND STAKEHOLDERS:

FORESTRY EXPERTS

FOREST OWNERS

CONTRACTORS FOR FOREST WORKS

TRIGLAV NATIONAL PARK

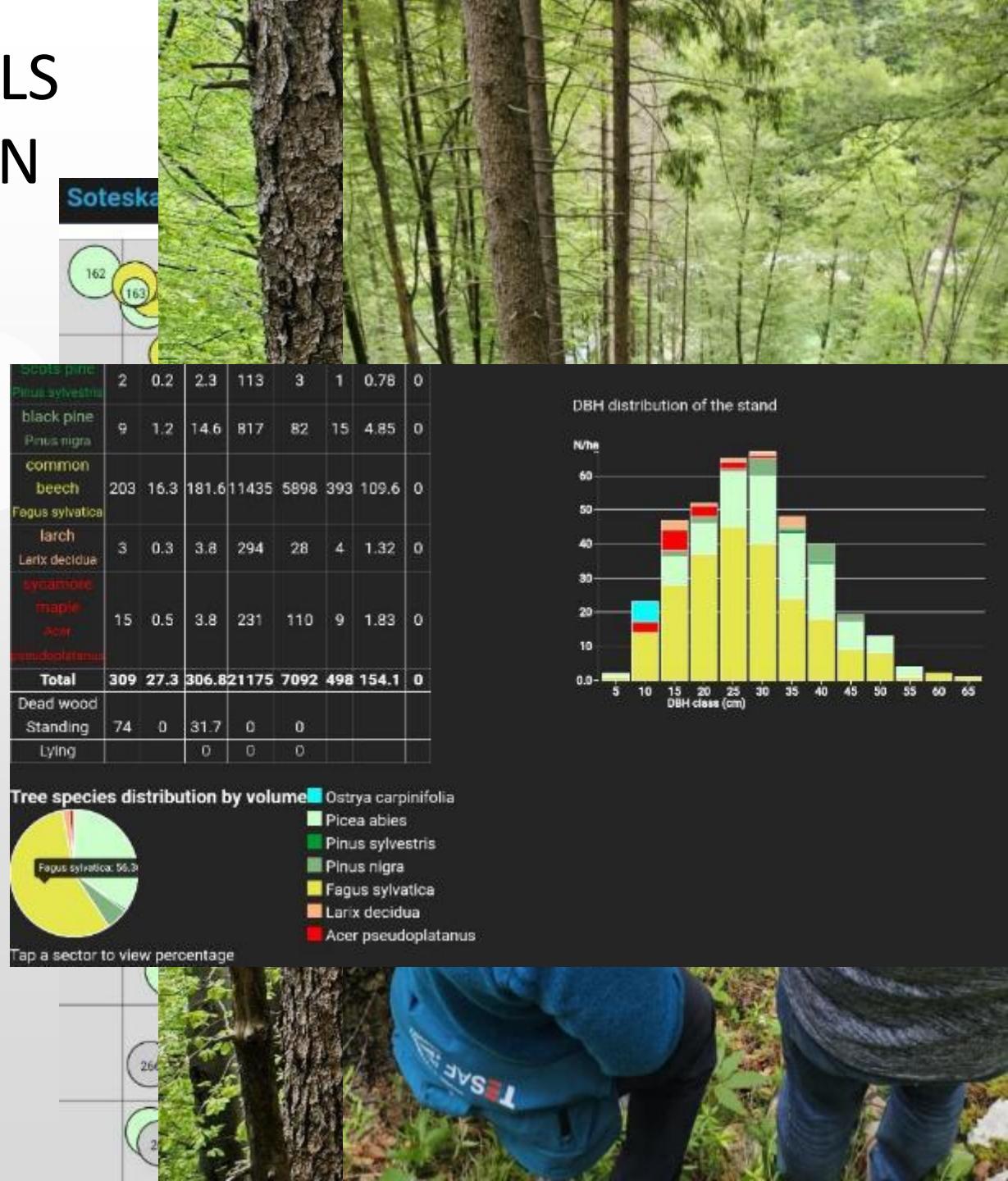
RAIL ROAD AND ROAD STATE COMPANY

MUNICIPALITIES AND LOCAL PUBLIC

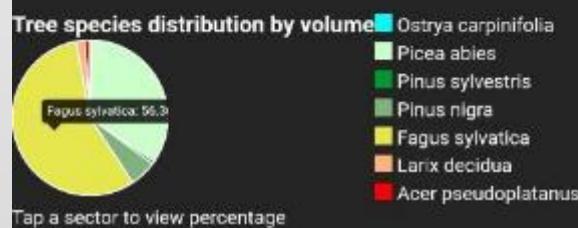
TRAINING FORESTRY PROFESSIONALS TO ENHANCE PROTECTIVE FUNCTION

MARTELOSCOPE and I+ TRAINER FOR
VIRTUAL TRAINING of silvicultural measures

1 HA BIG PLOT



EFI


I+ TRAINER ON TABLET COMPUTERS
tool for conducting silvicultural trainings –
education and knowledge transfer

*Silvicultural measures in protective forests:
STABILITY and SLOPE PROCESSES PREVENTION*

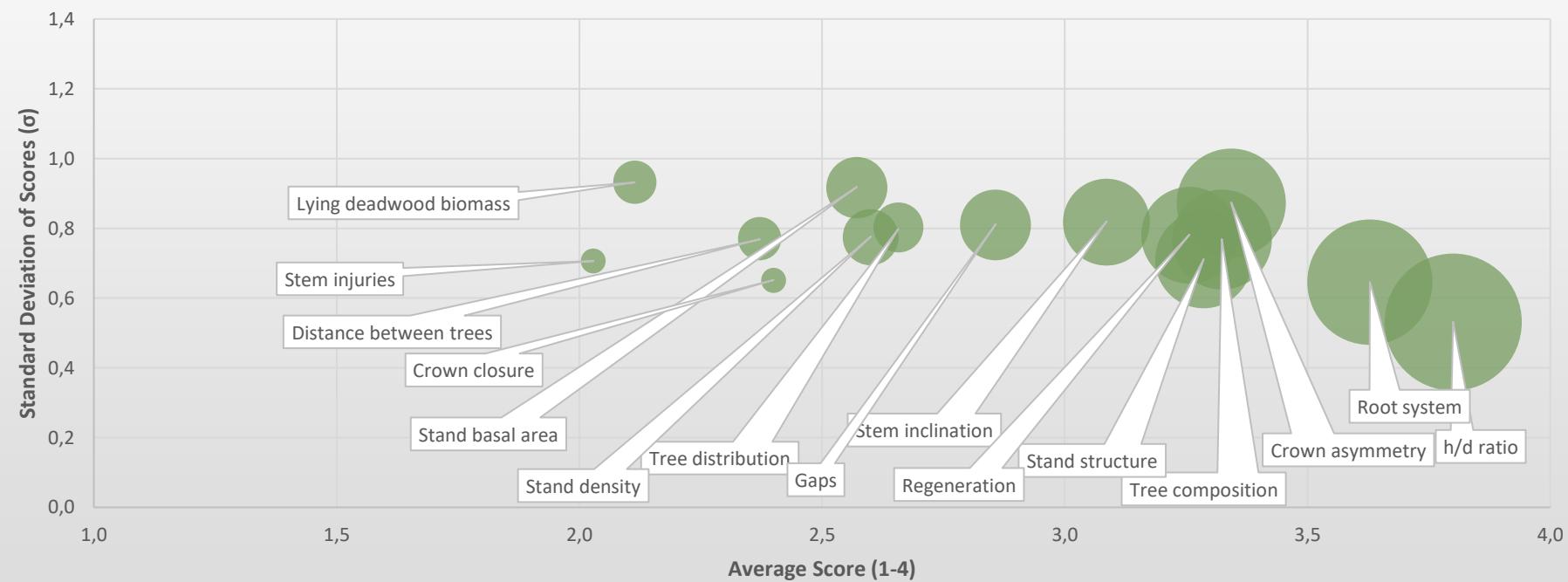
	Scots pine	Pinus sylvestris	black pine	Pinus nigra	common beech	Fagus sylvatica	larch	Larix decidua	sycamore maple	Acer pseudoplatanus	Total	
	2	0.2	2.3	113	3	1	0.78	0			309	27.3
											306.821175	7092
											498	154.1
Dead wood												
Standing	74	0	31.7	0	0							
Lying			0	0	0							

UPGRADING I+ TRAINER WITH PROTECTIVE MODULE

PROTECTIVE MODULE: the results will show how our measures affect protective function

15 PROTECTIVE INDICATORS:

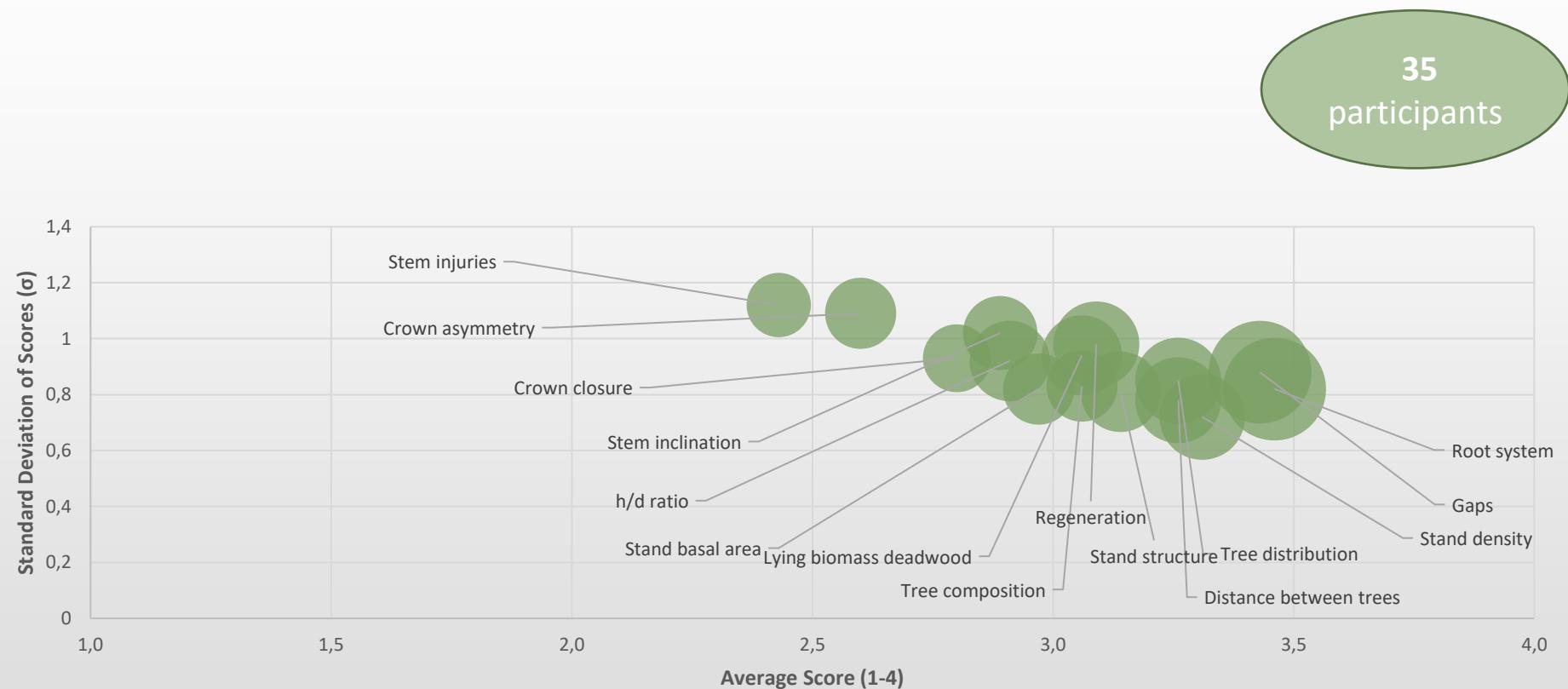
- STAND STABILITY AND SLOPE PROCESSES PREVENTION
- DEFINED
- EVALUATED BY FORESTRY EXPERTS
- ANALYZED
- RANKED
- INTEGRATED INTO THE I+ TRAINER


Rate each indicator with a score from 1 to 4 (1 - not important, 4 - very important) according to its impact on the protective function.

Indicators	Input	Indicator description
h/d ratio (slenderness)	height, diameter	<p>The height-to-diameter ratio (H/D ratio) is a key indicator in forestry used to assess the stability of trees. The formula is H/D = tree height (m) / diameter at breast height (DBH, cm).</p> <p>Trees with a high H/D ratio are generally more prone to breaking or uprooting, especially in strong winds. On the other hand, trees with a lower H/D ratio have a higher height but a larger diameter at breast height, making them more stable, resilient and resistant to natural disasters.</p>
Crown asymmetry	Crown asymmetry Symmetrical / asymmetrical crown Suggestion - 3 classes: 0 = none (symmetrical crown) 1 = slightly asymmetrical crown 2 = highly asymmetrical crown	<p>Crown symmetry is important for the stability of trees, especially in forests on steep slopes. A symmetrical crown reduces the risk of overturning or breaking in strong winds or storms. Asymmetrical crowns cause uneven weight distribution, which increases instability, especially on uneven terrain.</p>
Stem inclination	Stem inclination Suggestion - 3 classes: 0 = none – straight stem 1 = slightly inclined 2 = highly inclined	<p>Stem inclination strongly affects tree stability. A stem that is significantly inclined from the vertical axis has its mass distributed outside the vertical axis, which causes an uneven distribution of forces in the root system. Key impacts of stem inclination on stability:</p> <ul style="list-style-type: none"> * Increased risk of tree uprooting * Asymmetrical mass distribution: During strong winds or storms, the mass is greater and one-sided, making the tree more susceptible to mechanical failure. <p>In a stable protective stand, it is therefore important to have upright stems with minimal inclination. This is because upright stems have better static properties and increased resistance to mechanical forces.</p>

PROTECTIVE FOREST INDICATORS FOR STABILITY

35
participants


RATE	INDICATORS
1	h/d ratio
2	Root system
3	Crown asymmetry
4	Tree compositon
5	Stand structure
6	Regeneration
7	Stem inclination
8	Gaps
9	Tree distribution
10	Stand density
11	Stand basal area
12	Crown closure
13	Distance between trees
14	Lying deadwood biomass
15	Stem injuries

*Size of the bubble is based on frequency distribution of the highest score (score "4")

RANKING PROTECTIVE FOREST INDICATORS FOR SLOPE PROCESSES PREVENTION

RATE	INDICATORS
1	Root system
2	Gaps
3	Stand density
4	Tree distribution
5	Distance between trees
6	Stand structure
7	Regeneration
8	Tree composition
9	Lying dead wood biomass
10	Stand basal area
11	h/d ration
12	Stem inclination
13	Crown closure
14	Crown asymmetry
15	Stem injuries

*Size of the bubble is based on frequency distribution of the highest score (score "4")

NEXT STEPS

UPGRADING THE I+ TRAINER WITH PROTECTIVE MODULE

**CONDUCT SILVICULTURAL TRAININGS IN PROTECTIVE FORESTS
WITH THE UPGRADED VERSION OF THE I+ TRAINER**

**DEVELOP AN EDUCATIONAL CONCEPT FOR SILVICULTURAL TRAINING IN
PROTECTIVE FORESTS TO SUPPORT THE ORGANIZATION OF TRAINING SESSIONS**

**CREATE PRACTICAL ILLUSTRATIVE GUIDELINES TO SUPPORT
PROTECTIVE FOREST MANAGEMENT**

HIGHLIGHTS

- 1. ACTIVE FOREST MANAGEMENT IS A KEY TOOL FOR MITIGATING NATURAL HAZARDS**
- 2. CAPACITY BUILDING IS ESSENTIAL FOR IMPROVING MANAGEMENT IN PROTECTIVE FORESTS**
- 3. COLLABORATION WITH STAKEHOLDERS: FOREST LIVING LAB**
- 4. CONTINUOUS LEARNING: MARTELOSCOPE and I+ TRAINER**
- 5. EVIDENCE-BASED DECISION-MAKING**

Capacity building to support forest management in protective forests of Slovenia

Sever Kristina, dr. Kobal Milan, mag. Guček Matjaž, mag. Breznikar Andrej, Cholkova Magdalena, dr. Poljanec Aleš
Contact: kristina.sever@zgs.si